Ламинарное движение воды. Турбулентный Режим движения жидкости. Течение сжимаемых и не сжимаемых жидкостей

Фотография ламинарного течения

Ламинарный поток - спокойное течение жидкости или газа без перемешивания. Жидкость или газ перемещаются слоями, которые скользят друг относительно друга. По мере того, как увеличивается скорость движения слоев, или по мере уменьшения вязкости жидкости ламинарный поток превращается в турбулентный . Для каждой жидкости или газа эта точка наступает при определенной величине числа Рейнольдса .

Описание

Ламинарные течения наблюдаются или у очень вязких жидкостей , или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, ламинарные течения имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, который образуется вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости ламинарное течение может в некоторый момент перейти в неупорядоченное турбулентное течение . При этом резко изменяется сила сопротивления движению. Режим течения жидкости характеризуется так называемым числом Рейнольдса (Re) .

Когда значение Re меньше некоторого критического числа Re kp , имеет место ламинарные течения жидкости; если Re > Re kp , режим течения может стать турбулентным . Значение Re кр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах Rе кр ≈ 2200 (если характерной скоростью считать среднюю по сечению скорость, а характерным размером - диаметр трубы). Следовательно, при Re kp < 2200 течение жидкости в трубе будет ламинарным.

Распределение скоростей

Профиль осреднения скорости:
а - ламинарное течение
б - турбулентное течение

При ламинарном течении в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону V-V 0 (1 - r 2 /а 2 ), где а - радиус трубы, r - расстояние от оси, V 0 = 2V ср - осевая (численно максимальная) скорость течения; соответствующий параболический профиль скоростей показан на рис. а.

Напряжение трения изменяется вдоль радиуса по линейному закону τ=τ w r/a где τ w = 4μVср/a - напряжение трения на стенке трубы.

Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P1-P2 = λ(l/d)ρV ср 2 /2 где P1 и P2 - давления в к.-н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, λ - коэф. сопротивления , зависящий от Re для ламинарного течения λ = 64/Re .

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "ламинарное течение"

Энциклопедический словарь, 1998 г.

ламинарное течение

ЛАМИНАРНОЕ ТЕЧЕНИЕ (от лат. lamina - пластинка, полоска) течение, при котором жидкость (или газ) перемещается слоями без перемешивания. Существование ламинарного течения возможно только до определенного, т.н. критического, значения Рейнольдса числа Reкр. При Re, больших критического, ламинарное течение переходит в турбулентное.

Ламинарное течение

(от лат. lamina ≈ пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения (рис .). Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, который образуется вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. может в некоторый момент перейти в неупорядоченное турбулентное течение . При этом резко изменяется сила сопротивления движению. Режим течения жидкости характеризуется т. н. Рейнольдса числом Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место Л. т. жидкости; если Re > Rekp, режим течения может стать турбулентным. Значение Рекр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах Рекр » 2200 (если характерной скоростью считать среднюю по сечению скорость, а характерным размером ≈ диаметр трубы). Следовательно, при Rekp < 2200 течение жидкости в трубе будет Л. т. Расход жидкости при Л. т. в трубе определяется Пуазёйля законом.

Ламинарный - это воздушный поток, в котором струйки воздуха движутся в одном направлении и параллельны друг другу. При увеличении скорости до определенной величины струйки воздушного потока кроме поступательной скорости также приобретают быстро меняющиеся скорости, перпендикулярные к направлению поступательного движения. Образуется поток, который называется турбулентным, т. е. беспорядочным.

Пограничный слой

Пограничный слой - это слой, в котором скорость воздуха изменяется от нуля до величины, близкой к местной скорости воздушного потока.

При обтекании тела воздушным потоком (Рис. 5) частицы воздуха не скользят по поверхности тела, а тормозятся, и скорость воздуха у поверхности тела становится равной нулю. При удалении от поверхности тела скорость воздуха возрастает от нуля до скорости течения воздушного потока.

Толщина пограничного слоя измеряется в миллиметрах и зависит от вязкости и давления воздуха, от профиля тела, состояния его поверхности и положения тела в воздушном потоке. Толщина пограничного слоя постепенно увеличивается от передней к задней кромке. В пограничном слое характер движения частиц воздуха отличается от характера движения вне его.

Рассмотрим частицу воздуха А (Рис. 6), которая находится между струйками воздуха со скоростями U1 и U2, за счет разности этих скоростей, приложенных к противоположным точкам частицы, она вращается и тем больше, чем ближе находится эта частица к поверхности тела (где разность скоростей наибольшая). При удалении от поверхности тела вращательное движение частицы замедляется и становится равным нулю ввиду равенства скорости воздушного потока и скорости воздуха пограничного слоя.

Позади тела пограничный слой переходит в спутную струю, которая по мере удаления от тела размывается и исчезает. Завихрения в спутной струе попадают на хвостовое оперение самолета и снижают его эффективность, вызывают тряску (явление Бафтинга).

Пограничный слой разделяют на ламинарный и турбулентный (Рис. 7). При установившемся ламинарном течении пограничного слоя проявляются только силы внутреннего трения, обусловленные вязкостью воздуха, поэтому сопротивление воздуха в ламинарном слое мало.

Рис. 5

Рис. 6 Обтекание тела воздушным потоком - торможение потока в пограничном слое

Рис. 7

В турбулентном пограничном слое наблюдается непрерывное перемещение струек воздуха во всех направлениях, что требует большего количества энергии для поддерживания беспорядочного вихревого движения и, как следствие этого, создается большее по величине сопротивление воздушного потока движущемуся телу.

Для определения характера пограничного слоя служит коэффициент Cf. Тело определенной конфигурации имеет свой коэффициент. Так, например, для плоской пластины коэффициент сопротивления ламинарного пограничного слоя равен:

для турбулентного слоя

где Re - число Рейнольдса, выражающее отношение инерционных сил к силам трения и определяющее отношение двух составляющих - профильное сопротивление (сопротивление формы) и сопротивление трения. Число Рейнольдса Re определяется по формуле:

где V - скорость воздушного потока,

I - характер размера тела,

кинетический коэффициент вязкости сил трения воздуха.

При обтекании тела воздушным потоком в определенной точке происходит переход пограничного слоя из ламинарного в турбулентный. Эта точка называется точкой перехода. Расположение ее на поверхности профиля тела зависит от вязкости и давления воздуха, скорости струек воздуха, формы тела и его положения в воздушном потоке, а также от шероховатости поверхности. При создании профилей крыльев конструкторы стремятся отнести эту точку как можно дальше от передней кромки профиля, чем достигается уменьшение сопротивления трения. Для этой цели применяют специальные ламинизированные профили, увеличивают гладкость поверхности крыла и ряд других мероприятий.

При увеличении скорости воздушного потока или увеличении угла положения тела относительно воздушного потока до определенной величины в некоторой точке происходит отрыв пограничного слоя от поверхности, при этом резко уменьшается давление за этой точкой.

В результате того, что у задней кромки тела давление больше чем за точкой отрыва, происходит обратное течение воздуха из зоны большего давления в зону меньшего давления к точке отрыва, которое влечет за собой отрыв воздушного потока от поверхности тела (Рис. 8).

Ламинарный пограничный слой отрывается легче от поверхности тела, чем турбулентный.

Уравнение неразрывности струи воздушного потока

Уравнение неразрывности струи воздушного потока (постоянства расхода воздуха) - это уравнение аэродинамики, вытекающее из основных законов физики - сохранения массы и инерции - и устанавливающее взаимосвязь между плотностью, скоростью и площадью поперечного сечения струи воздушного потока.

Рис. 8

Рис. 9

При рассмотрении его принимают условие, что изучаемый воздух не обладает свойством сжимаемости (Рис. 9).

В струйке переменного сечения через сечение I протекает за определенный промежуток времени секундный объем воздуха, этот объем равен произведению скорости воздушного потока на поперечное сечение F.

Секундный массовый расход воздуха m равен произведению секундного расхода воздуха на плотность р воздушного потока струйки. Согласно закону сохранения энергии, масса воздушного потока струйки m1, протекающего через сечение I (F1), равна массе т2 данного потока, протекающего через сечение II (F2), при условии, если воздушный поток установившийся:

m1=m2=const, (1.7)

m1F1V1=m2F2V2=const. (1.8)

Это выражение и называется уравнением неразрывности струи воздушного потока струйки.

F1V1=F2V2= const. (1.9)

Итак, из формулы видно, что через различные сечения струйки в определенную единицу времени (секунду) проходит одинаковый объем воздуха, но с разными скоростями.

Запишем уравнение (1.9) в следующем виде:

Из формулы видно, что скорость воздушного потока струи обратно пропорциональна площади поперечного сечения струи и наоборот.

Тем самым уравнение неразрывности струи воздушного потока устанавливает взаимосвязь между сечением струи и скоростью при условии, что воздушный поток струи установившийся.

Статическое давление и скоростной напор уравнение Бернулли

воздух самолет аэродинамика

Самолет, находящийся в неподвижном или подвижном относительно него воздушном потоке, испытывает со стороны последнего давление, в первом случае (когда воздушный поток неподвижен) - это статическое давление и во втором случае (когда воздушный поток подвижен) - это динамическое давление, оно чаще называется скоростным напором. Статическое давление в струйке аналогично давлению покоящейся жидкости (вода, газ). Например: вода в трубе, она может находиться в состоянии покоя или движения, в обоих случаях стенки трубы испытывают давление со стороны воды. В случае движения воды давление будет несколько меньше, так как появился скоростной напор.

Согласно закону сохранения энергии, энергия струйки воздушного потока в различных сечениях струйки воздуха есть сумма кинетической энергии потока, потенциальной энергии сил давления, внутренней энергии потока и энергии положения тела. Эта сумма - величина постоянная:

Екин+Ер+Евн+Еп=сопst (1.10)

Кинетическая энергия (Екин) - способность движущегося воздушного потока совершать работу. Она равна

где m - масса воздуха, кгс с2м; V-скорость воздушного потока, м/с. Если вместо массы m подставить массовую плотность воздуха р, то получим формулу для определения скоростного напора q (в кгс/м2)

Потенциальная энергия Ер - способность воздушного потока совершать работу под действием статических сил давления. Она равна (в кгс-м)

где Р - давление воздуха, кгс/м2; F - площадь поперечного сечения струйки воздушного потока, м2; S - путь, пройденный 1 кг воздуха через данное сечение, м; произведение SF называется удельным объемом и обозначается v, подставляя значение удельного объема воздуха в формулу (1.13), получим

Внутренняя энергия Евн - это способность газа совершать работу при изменении его температуры:

где Cv - теплоемкость воздуха при неизменном объеме, кал/кг-град; Т-температура по шкале Кельвина, К; А - термический эквивалент механической работы (кал-кг-м).

Из уравнения видно, что внутренняя энергия воздушного потока прямо пропорциональна его температуре.

Энергия положения En - способность воздуха совершать работу при изменении положения центра тяжести данной массы воздуха при подъеме на определенную высоту и равна

где h - изменение высоты, м.

Ввиду мизерно малых значений разноса центров тяжести масс воздуха по высоте в струйке воздушного потока этой энергией в аэродинамике пренебрегают.

Рассматривая во взаимосвязи все виды энергии применительно к определенным условиям, можно сформулировать закон Бернулли, который устанавливает связь между статическим давлением в струйке воздушного потока и скоростным напором.

Рассмотрим трубу (Рис. 10) переменного диаметра (1, 2, 3), в которой движется воздушный поток. Для измерения давления в рассматриваемых сечениях используют манометры. Анализируя показания манометров, можно сделать заключение, что наименьшее динамическое давление показывает манометр сечения 3-3. Значит, при сужении трубы увеличивается скорость воздушного потока и давление падает.

Рис. 10

Причиной падения давления является то, что воздушный поток не производит никакой работы (трение не учитываем) и поэтому полная энергия воздушного потока остается постоянной. Если считать температуру, плотность и объем воздушного потока в различных сечениях постоянными (T1=T2=T3;р1=р2=р3, V1=V2=V3), то внутреннюю энергию можно не рассматривать.

Значит, в данном случае возможен переход кинетической энергии воздушного потока в потенциальную и наоборот.

Когда скорость воздушного потока увеличивается, то увеличивается и скоростной напор и соответственно кинетическая энергия данного воздушного потока.

Подставим значения из формул (1.11), (1.12), (1.13), (1.14), (1.15) в формулу (1.10), учитывая, что внутренней энергией и энергией положения мы пренебрегаем, преобразуя уравнение (1.10), получим

Это уравнение для любого сечения струйки воздуха пишется следующим образом:

Такой вид уравнения является самым простым математическим уравнением Бернулли и показывает, что сумма статического и динамического давлений для любого сечения струйки установившегося воздушного потока есть величина постоянная. Сжимаемость в данном случае не учитывается. При учете сжимаемости вносятся соответствующие поправки.

Для наглядности закона Бернулли можно провести опыт. Взять два листка бумаги, держа параллельно друг другу на небольшом расстоянии, подуть в промежуток между ними.


Рис. 11

Листы сближаются. Причиной их сближения является то, что с внешней стороны листов давление атмосферное, а в промежутке между ними вследствие наличия скоростного напора воздуха давление уменьшилось и стало меньше атмосферного. Под действием разности давлений листки бумаги прогибаются вовнутрь.

Аэродинамические трубы

Экспериментальная установка для исследования явлений и процессов, сопровождающих обтекание тел потоком газа называется аэродинамической трубой. Принцип действия аэродинамических труб основан на принципе относительности Галилея: вместо движения тела в неподвижной среде изучается обтекание неподвижного тела потоком газа В аэродинамических трубах экспериментально определяются действующие на ЛА аэродинамические силы и моменты исследуются распределения давления и температуры по его поверхности, наблюдается картина обтекания тела, изучается аэроупругость и т д.

Аэродинамические трубы зависимости от диапазона чисел Маха М разделяются на дозвуковые (М=0,15-0,7), трансзвуковые (М=0,7-1 3), сверхзвуковые (М=1,3-5) и гиперзвуковые (М=5-25), по принципу действия - на компрессорные (непрерывного действия), в которых поток воздуха создается спец компрессором, и баллонные с повышенным давлением, по компоновке контура - на замкнутые и незамкнутые.

Компрессорные трубы имеют высокий кпд, они удобны в работе, но требуют создания уникальных компрессоров с большими расходами газа и большой мощности. Баллонные аэродинамические трубы по сравнению с компрессорными менее экономичны, поскольку при дросселировании газа часть энергии теряется. Кроме того, продолжительность работы баллонных аэродинамических труб ограничена запасом газа в баллонах и составляет для различных аэродинамических труб от десятков секунд до несколько минут.

Широкое распространение баллонных аэродинамических труб обусловлено тем, что они проще по конструкции а мощности компрессоров, необходимые для наполнения баллонов, относительно малы. В аэродинамических трубах с замкнутым контуром используется значительная часть кинетической энергии, оставшейся в газовом потоке после его прохождения через рабочую область, что повышает КПД трубы. При этом, однако, приходится увеличивать общие размеры установки.

В дозвуковых аэродинамических трубах исследуются аэродинамические характеристики дозвуковых самолетов вертолетов а также характеристики сверхзвуковых самолетов на взлетно-посадочных режимах. Кроме того, они используются для изучения обтекания автомобилей и др. наземных транспортных средств, зданий, монументов, мостов и др. объектов На рис показана схема дозвуковой аэродинамической трубы с замкнутым контуром.

Рис. 12

1- хонейкомб 2 - сетки 3 - форкамера 4 - конфузор 5 - направление потока 6 - рабочая часть с моделью 7 - диффузор, 8 - колено с поворотными лопатками, 9 - компрессор 10 - воздухоохладитель

Рис. 13

1 - хонейкомб 2 - сетки 3 - форкамера 4 конфузор 5 перфорированная рабочая часть с моделью 6 эжектор 7 диффузор 8 колено с направляющими лопатками 9 выброс воздуха 10 - подвод воздуха от баллонов


Рис. 14

1 - баллон со сжатым воздухом 2 - трубопровод 3 - регулирующий дроссель 4 - выравнивающие сетки 5 - хонейкомб 6 - детурбулизирующие сетки 7 - форкамера 8 - конфузор 9 - сверхзвуковое сопло 10 - рабочая часть с моделью 11 - сверхзвуковой диффузор 12 - дозвуковой диффузор 13 - выброс в атмосферу


Рис. 15

1 - баллон с высоким давлением 2 - трубопровод 3 - регулирующий дроссель 4 - подогреватель 5 - форкамера с хонейкомбом и сетками 6 - гиперзвуковое осесимметричное сопло 7 - рабочая часть с моделью 8 - гиперзвуковой осесимметричный диффузор 9 - воздухоохладитель 10 - направление потока 11 - подвод воздуха в эжекторы 12 - эжекторы 13 - затворы 14 - вакуумная емкость 15 - дозвуковой диффузор

ЛАМИНАРНОЕ ТЕЧЕНИЕ (от лат. lamina - пластинка) - упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re . Для каждого вида течения существует такое число R е Кр, наз. нижним критич. числом Рейнольдса, что при любом Re Л. т. является устойчивым и практически осуществляется; значение R е кр обычно определяется экспериментально. При R е>R е кр, принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение .Теоретически Л. т. изучаются с помощью Навье - Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.

Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения R е Кр 2200, где Re= ( - средняя по расходу скорость жидкости, d - диаметр трубы, - кинематич. коэф. вязкости, - динамич. коэф. вязкости, - плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (=10 -6 м 2 /с при 20° С) устойчивое Л. т. с=1 м/с возможно лишь в трубках диаметром не более 2,2 мм.

При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону -(1 - -r 2 /а 2), где а - радиус трубы, r - расстояние от оси, - осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а . Напряжение трения изменяется вдоль радиуса по линейному закону где = - напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P 1 -P 2 где p 1 и р 2 - давления в к--н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, - коэф. сопротивления, зависящий от для Л. т. . Секундный расход жидкости в трубе при Л. т. определяет Пуазейля закон . В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка

Распределение скоростей по сечению трубы: а - при ламинарном течении; б - при турбулентном течении.

Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6 )и закон сопротивления, т. е. зависимость от Re (см. Гидродинамическое сопротивление ).

Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой ),при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула) . Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Тар г С. М., Основные задачи теории ламинарных течений, М.- Л., 1951; Слезкин Н. А., Динамика вязкой несжимаемой жидкости, М., 1955, гл. 4 - 11. С. М. Тарг .

Когда частицы жидкости перемещаются, не пересекая траектории друг друга, и вектор скорости становится касательной к траектории, то такой поток называется направленным. При его возникновении слои жидкости, как правило, скользят относительно друг друга. Такой поток известен как ламинарный поток. Важным условием его существования является относительно небольшая движения частиц.

В ламинарном потоке, слой, который соприкасается с неподвижной поверхностью, имеет нулевую скорость. В направлении, перпендикулярном к поверхности, скорость слоев постепенно возрастает. Кроме того, давление, плотность и другие динамические свойства жидкости остаются неизменными в каждой точке пространства внутри потока.

Число Рейнольдса является количественным показателем характера течения жидкости. Когда оно небольшое (меньше 1000) – поток является ламинарным. В этом случае взаимодействие происходит посредством силы инерции. При значениях от 1000 до 2000 поток ни турбулентный, ни ламинарный. Другими словами, происходит переход от одного типа движения к другому. Число Рейнольдса является безразмерной величиной.

Что такое турбулентное течение?

Когда свойства жидкости в потоке быстро меняются со временем, то он называется турбулентным. Скорость, давление, плотность и другие показатели, при этом, принимают совершенно случайные значения.

Жидкость, двигающаяся в однородной цилиндрической трубе конечной длины, также известной как пуазейлевская, будет турбулентной, когда число Рейнольдса достигнет критического значения (около 2000). Тем не менее, поток не может быть турбулентным в явном виде, когда число Рейнольдса больше 10000.

Турбулентный поток характеризуется случайной природой характеристик, диффузией и завихрениями. Единственным методом их изучения будет эксперимент.

В чем разница между ламинарным и турбулентным потоками?

В ламинарном потоке течение происходит при малых скоростях с низким числом Рейнольдса, а турбулентным он становится при высоких скоростях и больших числах Рейнольдса.

В ламинарном потоке параметры жидкости прогнозируемы и практически не изменяются. В этом случае нет нарушений движения слоев и их перемешивания. В турбулентном потоке, картина течения хаотична. Здесь есть завихрения, водовороты, и поперечные течения.

Внутри ламинарного потока, свойства жидкости в любой точке пространства остаются неизменными с течением времени. В случае турбулентного потока они стохастические.

2024 english-speak.ru. Изучение английского языка.