В качественном анализе преимущественно проводят реакции. Качественный химический ана­лиз. Химические методы качественного анализа

Классификация методов качественного анализа.

Предмет и задачи аналитической химии.

Аналитической химией называют науку о методах качественного и количественного исследования состава веществ (или их смесей). Задачей аналитической химии является развитие теории химических и физико-химических методов анализа и операций в научных исследованиях.

Аналитическая химия состоит из двух основных разделов: качественный анализ состоит в “открытии “, т.е. обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество. Количественный анализ заключается в определении количественного содержания отдельных составных частей сложного вещества.

Практическое значение аналитической химии велико. С помощью методов хим. анализа открыты законы: постоянства состава, кратных отношений, определены атомные массы элементов, химические эквиваленты, установлены формулы многих соединений.

Аналитическая химия способствует развитию естественных наук - геохимии, геологии, минералогии, физики, биологии, технологических дисциплин, медицины. Химический анализ - основа современного химико-технологического контроля всех производств, в которых производится анализ сырья, продукции и отходов производства. По результатам анализа судят о течении технологического процесса и о качестве продукции. Химические и физико-химические методы анализа лежат в основе установления госстандарта на всю выпускаемую продукцию.

Велика роль аналитической химии в организации мониторинга окружающей среды. Это мониторинг загрязнения поверхностных вод, почв ТМ, пестицидами, нефтепродуктами, радионуклидами. Одной из задач мониторинга является создание критериев, устанавливающих пределы возможного экологического ущерба. Например ПДК - предельно-допустимая концентрация - это такая концентрация, при воздействии которой на организм человека, периодически или в течении всей жизни, прямо или косвенно через экологические системы, не возникает заболеваний или изменений состояния здоровья, обнаруживаемые современными методами сразу же или в отдаленные сроки жизни. Для каждого хим. вещества имеется свое значение ПДК.

Классификация методов качественного анализа.

Исследуя новое соединение, прежде всего определяют, из каких элементов (или ионов) оно состоит, а затем уже количественные отношения, в которых они находятся. Поэтому качественный анализ, как правило, предшествует количественному анализу.

Все аналитические методы основаны на получении и измерении аналитического сигнала, т.е. любого проявления химических или физических свойств вещества, которое можно использовать для установления качественного состава анализируемого объекта или для количественной оценки содержащихся в нем компонентов. Анализируемым объектом может быть индивидуальное соединение в любом агрегатном состоянии. смесь соединений, природный объект (почва, руда, минерал, воздух, вода), продукты промышленного производства и продукты питания. Перед анализом проводят отбор пробы, измельчение, просеивание, усреднение и т.д. Подготовленный для анализа объект называют образцом или пробой.

В зависимости от поставленной задачи выбирают метод. Аналитические методы качественного анализа по способу выполнения делятся на: 1) анализ “сухим” и 2) анализ “мокрым” путем.

Анализ “сухим” путем проводится с твердыми веществами. Он делится на пирохимический и метод растирания.

Пирохимический (греч. - огонь) вид анализа проводится нагреванием исследуемого образца в пламени газовой или спиртовой горелки, выполняется двумя путями: получение окрашенных “перлов” или окрашивание пламени горелки.

1.“Перлы” (франц. - жемчуг) образуются при растворении в расплаве солей NaNH 4 PO 4 ∙ 4 H 2 O, Na 2 B 4 O 7 ∙ 10 H 2 O - бура) или оксидов металлов. Наблюдая окраску полученных перлов “стекол” устанавливают присутствие тех или иных элементов в образце. Так, например, соединения хрома делают зеленую окраску перла, кобальта - синюю, марганца - фиолетово-аметистовую и т.д.

2. Окрашивание пламени - летучие соли многих металлов при внесении их в несветящуюся часть пламени окрашивают его в разные цвета, например, натрий - интенсивно желтый, калий - фиолетовый, барий - зеленый, кальций - красный и т.д. Эти виды анализа используются в предварительных испытаниях и в качестве “экспресс” - метода.

Анализ методом растирания. (1898г. Флавицкий). Исследуемый образец растирают в фарфоровой ступке с равным количеством твердого реагента. По окраске полученного соединения судят о наличии определяемого иона. Метод используется в предварительных испытаниях и проведения “экспресс” анализа в полевых условиях для анализа руд и минералов.

2.Анализ “мокрым” путем - это анализ образца, растворенного в каком - либо растворителе. В качестве растворителя чаще всего используют воду, кислоты или щелочи.

По способу проведения методы качественного анализа делятся на дробный и систематический. Метод дробного анализа - это определение ионов с помощью специфических реакций в любой последовательности. Применяется в агрохимических, заводских и пищевых лабораториях, когда состав исследуемого образца известен и требуется только проверить отсутствие примесей или в проведении предварительных испытаний. Систематический анализ - это анализ в строго определенной последовательности, в которой каждый ион обнаруживается только после того, как будут обнаружены и удалены мешающие определению ионы.

В зависимости от взятого количества вещества для анализа, а также от техники выполнения операций методы подразделяются на:

- макроанализ - проводится в сравнительно больших количествах вещества(1- 10 г). Анализ выполняется в водных растворов и в пробирках.

-микроанализ - исследует очень малые количества вещества (0,05 - 0,5 г). Выполняется либо на полоске бумаги, часовом стекле с каплей раствора (капельный анализ) или на предметном стекле в капле раствора получают кристаллы, по форме которых под микроскопом устанавливают вещество (микрокристаллоскопический).

Основные понятия аналитической химии.

Аналитические реакции - это реакции, сопровождающиеся хорошо заметным внешним эффектом:

1) выпадением или растворением осадка;

2) изменением окраски раствора;

3) выделение газа.

Кроме того, к аналитическим реакциям предъявляются еще два требования: необратимость и достаточная скорость реакции.

Вещества, под действием которых происходят аналитические реакции, называются реагентами или реактивами. Все хим. реагенты делятся на группы:



1) по химическому составу (карбонаты, гидроксиды, сульфиды и т.д.)

2) по степени очистки основного компонента.

Условия выполнения хим. анализа:

1. Среда реакции

2. Температура

3. Концентрация определяемого иона.

Среда. Кислая, щелочная, нейтральная.

Температура. Большинство хим. реакций выполняются при комнатных условиях “на холоду”, или иногда требуется охладить под краном. Многие реакции идут при нагревании.

Концентрация - это количество вещества, содержащееся в определенном весовом или объемном количестве раствора. Реакция и реактив, способный вызвать в заметной степени свойственный ему внешний эффект даже при ничтожно малой концентрации определяемого вещества, называются чувствительными .

Чувствительность аналитических реакций характеризуется:

1) предельным разбавлением;

2) предельной концентрацией;

3) минимальным объемом предельно разбавленного раствора;

4) пределом обнаружения (открываемым минимумом);

5) показателем чувствительности.

Предельное разбавление Vlim – максимальный объем раствора, в котором может быть (больше чем в 50 опытах из 100 опытов) обнаружен один грамм данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Например, при реакции ионов меди с аммиаком в водном растворе

Cu 2+ + 4NH 3 = 2+ ¯ярко-синий комплекс

Предельное разбавление иона меди равно (Vlim = 2,5 · 10 5 мг/л), т.е. ионы меди можно открыть с помощью этой реакции в растворе, содержащем 1 г меди в 250 000 мл воды. В растворе, в котором содержится менее 1 г меди (II) в 250 000 мл воды, обнаружить эти катионы вышеприведенной реакцией невозможно.

Предельная концентрация Сlim (Cmin) – наименьшая концентрация, при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией. Выражается в г/мл.

Предельная концентрация и предельное разбавление связаны соотношением: Сlim = 1 / V lim

Например, ионы калия в водном растворе открывают с помощью гексанитрокобальтатом (III) натрия

2K + + Na 3 [ Co(NO 2) 6 ] ® NaK 2 [ Co(NO 2) 6 ] ¯ + 2Na +

Предельная концентрация ионов К + при этой аналитической реакции равна С lim = 10 -5 г/мл, т.е. ион калия нельзя открыть указанной реакцией, если его содержание составляет меньше 10 -5 г в 1 мл анализируемого раствора.

Минимальный объем предельно разбавленного раствора Vmin – наименьший объем анализируемого раствора, необходимый для обнаружения открываемого вещества данной аналитической реакцией. Выражается в мл.

Предел обнаружения (открываемый минимум) m – наименьшая масса определяемого вещества, однозначно открываемого данной ан. реакциейв минимальном объеме предельно разбавленного раствора. Выражается в мкг (1 мкг = 10 -6 г).

m = C lim · V min × 10 6 = V min × 10 6 / V lim

Показатель чувствительности аналитической реакции определяется

pС lim = - lg C lim = - lg(1/Vlim) = lg V lim

Ан. реакция тем чувствительнее, чем меньше ее открываемый минимум, минимальный объем предельно разбавленного раствора и чем больше предельное разбавление.

Величина предела обнаружения зависит от:

1. Концентрации исследуемого раствора и реагента.

2. Продолжительности протекания ан. реакции.

3. Способа наблюдения внешнего эффекта (визуально или с помощью прибора)

4. Соблюдения условий выполнения ан. Реакций (t, рН, количество реагента, его чистота)

5. Присутствии и удаления примесей, посторонних ионов

6. Индивидуальные особенности химика-аналитика (аккуратность, острота зрения, умение различать цвета).

Типы аналитических реакций (реактивов):

Специфические - реакции, позволяющие определять данный ион или вещества в присутствии любых других ионов или веществ.

Например: NH4 + + OH - = NH 3 ­ (запах) + H 2 O

Fe 3+ + CNS - = Fe(CNS) 3 ¯

кроваво-красный

Селективные - реакции позволяют избирательно открывать сразу несколько ионов с одинаковым внешним эффектом. Чем меньше ионов открывает данный реактив, тем выше его избирательность.

Например:

NH 4 + + Na 3 = NH 4 Na

K + + Na 3 = NaК 2

Групповые реакции (реагенты) позволяют обнаруживать целую группу ионов или каких-то соединений.

Например: катионы II группы - групповой реагент (NH4)2CO3

СaCI 2 + (NH 4) 2 CO 3 = CaCO 3 + 2 NH 4 CI

BaCI 2 + (NH 4) 2 CO 3 = BaCO 3 + 2 NH 4 CI

SrCI 2 + (NH 4) 2 CO 3 = SrCO 3 + 2 NH 4 CI

Лекция 3

Качественный анализ

1. Васильев В.П. Аналитическая химия: В 2 кн. : Кн. 1: Титриметрические и гравиметрические методы анализа: учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М. : Дрофа, 2004. – 368 с. (С. 33 – 35, 263, 309 – 311).

2. Лебедева М.И. Аналитическая химия и физико-химические методы анализа: учеб. пособие / М.И. Лебедева. – Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. – 216 с. – http://window.edu.ru/window_catalog/files/r38085/tstu2005-134.pdf

Качественный анализ – это анализ, целью которого является установление содержащихся в пробе химических элементов, ионов, веществ.

Методы качественного анализа

Методы качественного анализа различны: химические, физические, физико-химические.

Методы качественного анализа, позволяющие определить в анализируемом веществе содержание отдельных элементов, называют элементным анализом ;функциональных групп – функциональным анализом ; индивидуальных химических соединений, характеризующихся определенной молекулярной массой, – молекулярным анализом .

Совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом .

Химические методы основаны на том, что открываемый элемент или ион переводят в какое-либо соединение, обладающее определенными свойствами. Происходящее при этом химическое превращение называется аналитической реакцией . Вещество, которое вызывает это превращение, называется реактивом (реагентом ).

Аналитические реакции можно классифицировать следующим образом:

1. Групповые реакции : один и тот же реактив реагирует с группой ионов, давая одинаковый сигнал. Например , для отделения группы ионов (Ag + , Pb 2 + , Hg 2 2+) используют реакцию их с Cl − -ионами, при этом образуются белые осадки (AgCl, PbCl 2 , Hg 2 Cl 2).

2. Избирательные (селективные) реакции .

Например : йодокрахмальная реакция. Впервые ее описал в 1815 г немецкий химик Ф. Штромейер . Для этих целей используют органические реагенты.

Например: диметилглиоксим + Ni 2 + → образование ало-красного осадка диметилглиоксимата никеля.

Изменяя условия протекания аналитической реакции, можно неизбирательные реакции сделать избирательными.

Например: если реакции Ag + , Pb 2 + , Hg 2 2 + + Cl − проводить при нагревании, то PbCl 2 не осаждается, так как он хорошо растворим в горячей воде.

3. Реакции комплексообразования используются для целей маскирования мешающих ионов.

Например: для обнаружения Со 2 + в присутствии Fe 3 + -ионов с помощью KSCN , реакцию проводят в присутствии F − -ионов. При этом Fe 3 + + 4F − → − , K н = 10 − 16 , поэтому Fe 3 + -ионы закомплексованы и не мешают определению Co 2 + -ионов.

В аналитической химии используются следующие реакции :

1. Гидролиз (по катиону, по аниону, по катиону и аниону):

Al 3 + + HOH ↔ Al(OH) 2 + + H + ;

CO 3 2 − + HOH ↔ HCO 3 − + OH − ;

Fe 3 + + (NH 4) 2 S + HOH → Fe(OH) 3 + ...

2. Реакции окисления-восстановления :

2MnSO 4 + 5K 2 S 2 O 8 + 8H 2 O 2HMnO 4 + 10KHSO 4 + 2H 2 SO 4

3. Реакции комплексообразования :

СuSO 4 + 4NH 4 OH → SO 4 + 4H 2 O

4. Реакции осаждения :

Ba 2 + + SO 4 2 − → BaSO 4 ↓

В качественном анализе используются только те реакции , которые сопровождаются какими-либо хорошо заметными внешними эффектами :

1. Образование или растворение осадка :

Hg 2 + + 2I − → HgI 2 ↓;

HgI 2 + 2KI − → K 2 HgI 4

бесцветный

2. Появление, изменение, исчезновение окраски раствора (цветные реакции):

Mn 2 + → MnO 4 − → MnO 4 2 −

бесцветный фиолетовый зеленый

3. Выделение газа :

SO 3 2 − + 2H + → SO 2 + H 2 O.

4. Реакции образования кристаллов строго определенной формы (микрокристаллоскопические реакции).

5. Реакции окрашивания пламени .

Аналитические реакции можно проводить «сухим» и «мокрым» путем.

Примеры реакций, проводимых «сухим» путем :

– реакции окрашивания пламени (Na + – желтый; Sr 2 + – красный; Ba 2 + – зеленый; Са 2+ – кирпично-красный, K + – фиолетовый; Li + – малиновый, Tl 3 + – зеленый, In + – синий и др.);

– при сплавлении Na 2 B 4 O 7 и Co 2 + , Na 2 B 4 O 7 и Ni 2 + , Na 2 B 4 O 7 и Cr 3 + образуются «перлы » буры различной окраски. Например , соединения Co 2 + дадут интенсивно-синюю окраску, Cr 3 + – изумрудно-зеленую.

Окраска перла зависит от того, в каком конусе (зоне) пламени происходи нагревание – окислительном или восстановительном. В центре пламени у основания фитиля температура достигает 320 0 С – это зона восстановления , выше находится зона окисления , температура в верхней части доходит до 1550 0 С.

Методика получения перлов проста. Берут платиновую проволоку , один конец сгибают в ушко , а другой впаивают в стеклянную трубочку . Платиновое ушко нагревают в пламени горелки и горячее погружают в соль . Приставшую соль сначала держат под пламенем горелки, чтобы не слишком интенсивно выделялась вода, а затем сплавляют в бесцветный перл (соль буры Na 2 B 4 O 7 · 7Н 2 О). После этого еще горячим перлом прикасаются к исследуемому веществу и затем вновь вносят в окислительную часть пламени, получая цветной перл. Наблюдают полученный цвет в холодном и горячем состоянии.

Чаще всего аналитические реакции проводят в растворах («мокрый» путь ). Анализируемый объект (индивидуальное вещество или смесь веществ) может находиться в любом агрегатном состоянии (твердом, жидком, газообразном). Объект для анализа называется образцом, или пробой . Один и тот же элемент в образце может находиться в различных химических формах . Например: S 0 , S 2 − , SO 4 2 − , SO 3 2 − и т.д. В зависимости от цели и задачи анализа после переведения в раствор пробы проводят элементный анализ (определение общего содержания серы) или фазовый анализ (определение содержания серы в каждой фазе или в ее отдельных химических формах).

В зависимости от того, с какими количествами вещества проводят операции при выполнении аналитической реакции, различают :

макроанализ – 1 – 10 г, 10 – 100 мл;

полумикроанализ – 0,05 – 0,5 г, до 10 мл;

микроанализ – 0,001 – 10 -6 г, 0,1 – 10-4 мл;

ультрамикроанализ – 10 -6 – 10 -9 г, 10-4 – 10 -6 мл;

субмикроанализ – 10 -9 – 10 -12 г, 10-7 – 10 -10 мл.

Существует капельный метод анализа , введенный в аналитическую практику Н.А. Тананаевым (1920) . Реакции проводят на фарфоровой пластинке, предметном стекле, но чаще всего на полоске фильтровальном бумаги.

Выполняя ту или иную аналитическую реакцию необходимо строго соблюдать определенные условия ее протекания (температура, рН раствора, концентрация) с тем, чтобы она протекала быстро и имела достаточно низкий предел обнаружения . Например , осадки, растворимость которых повышается с увеличением температуры, необходимо получать только на холоду. В тоже время некоторые осадки получают только при нагревании.

Очень важное условие – достаточно большая концентрация открываемого иона в растворе. Наименьшее количество вещества (иона), которое можно открыть с помощью данного реагента в капле исследуемого раствора объемом в 1 микролитр (10 -6 л) называется чувствительностью реакции .

Количественно чувствительность характеризуется следующими показателями:

открываемый минимум (m ) – это наименьшее количество вещества или иона, которое может быть открыто посредством данной реакции при определенных условиях.

m = с пред. ·V min · 10 6 мкг

m = V min · 10 6 / V пред мкг

где с пред – предельная концентрация; V min – минимальный объем предельно разбавленного раствора; V пред – предельное разбавление.

Предельная концентрация (с пред ) – это отношение единицы массы определенного иона к массе наибольшего количества растворителя.

, [мкг/мл ]

Предельное разбавление (V пред ) – это величина, обратная предельной концентрации и показывающая, в каком количестве водного раствора (в мл) содержится 1 г определяемого иона.

;

Минимальный объем (V min ) – это объем раствора, содержащий открываемый минимум определенного иона.

, [мл ]

Чувствительность реакции , служащая для открытия одного и того же иона, может очень сильно различаться . Например , чувствительность реакции на Cu 2+ :

– если используется HCl, то m = 1 мкг, образуется комплекс 2- желто-зеленого цвета;

– если используется NH 3 , то m = 0,2 мкг, образуется комплекс 2+ синего цвета;

– если используется K 4 , то m = 0,02 мкг, образуется комплекс Cu 2 красно-бурого цвета.

Для повышения чувствительности реакции можно использовать следующие приемы :

увеличить продолжительность реакции, что особенно эффективно, если в ней принимают участие неэлектролиты или слабые электролиты .

добавить к раствору этиловый спирт , понижающий растворимость неорганических соединений, если в реакции наблюдается образование осадка;

взболтать водную реакционную смесь с какой-либо несмешивающейся с водой органической жидкостью .

В исследуемом растворе может присутствовать не один ион , а несколько . Применяя специфические реакции, можно открывать соответствующий ион дробным методом , т.е. непосредственно в отдельных порциях исследуемого раствора, не обращая внимания на те ионы, которые соединяются с данным. Дробный анализ был открыт Тананаевым в 1950 г .

Достоинством дробного анализа является быстрота его выполнения. Большую роль он играет тогда, когда анализу подвергается смесь с ограниченным количеством ионов и состав смеси приблизительно известен .

Недостатком дробного метода является в некоторых случаях отсутствие надежных специфических реакций для определенных ионов.

Поэтому для таких ионов необходимо разработать определенную последовательность проведения реакций открытия отдельных ионов, представляющую собой систематический ход анализа . Он состоит в том, что к открытию каждого иона приступают лишь тогда , когда все другие ионы , мешающие его открытию, будут предварительно открыты и удалены . Например , анализ смеси, содержащей Ba 2+ и Са 2+ , открывают оксалат-ионом С 2 О 4 2- :

Ва 2+ + С 2 О 4 2- → ВаС 2 О 4 ↓ (желтый)

фильтрат-Са 2+ + С 2 О 4 2- → СаС 2 О 4 ↓ (белый)

При систематическом ходе анализа ионы выделяются из сложных смесей не по одному, а целыми группами с помощью специальных реактивов, дающих одинаковую реакцию. Эти реактивы называются групповыми реагентами (групповыми реактивами ). Такие реактивы значительно упрощают проведение анализа .

И анализ вещества

Химическая идентификация

В практической деятельности специалистов часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания, что является предметом изучения аналитической химии.

Аналитическая химия – это наука о методах определения химического состава вещества и его структуры.

В современной аналитической химии можно выделить качественный анализ , который решает вопрос о том, какие компоненты входят в состав анализируемого объекта, и количественный анализ , который даёт информацию о количественном содержании компонентов. При проведении качественного и количественного анализа измеряют аналитический сигнал – свойство анализируемого вещества, которое позволяет судить о наличии в нём тех или иных компонентов. Это может быть сила тока, ЭДС системы, интенсивность излучения, цвет и т. д.

Классификацию видов анализа можно проводить по различным признакам. Например, в зависимости от количества анализируемого вещества, объема растворов, используемых для анализа, а также от применения техники выполнения эксперимента методы анализа делят на макро-, полумикро-, микро- и ультрамикроанализы.

Полумикроанализ имеет ряд преимуществ: экономятся время и реагенты, повышается надежность результатов анализа благодаря использованию более специфических и высокочувствительных реагентов, уменьшается расход реактивов и материалов.

Задачей качественного анализа является определение химических элементов, ионов, атомов, молекул и т. д. в анализируемом веществе (объекте).

Качественный анализ можно проводить как химическими, так и инструментальными (физическими и физико-химическими) методами.

Анализ исследуемого вещества в качественном химическом анализе можно проводить «мокрым» и «сухим» путем. В первом случае анализ осуществляют в растворах путем добавления соответствующих реактивов. Во втором случае определение состава вещества основано на его способности окрашивать в характерный цвет бесцветное пламя горелки или давать окрашенные «перлы» при сплавлении с бурой. Открытие отдельных ионов в полумикроанализе производится в основном «мокрым путем».

Для открытия ионов в растворах применяют различные характерные реакции, которые сопровождаются внешними эффектами – возникновением аналитического сигнала , например, изменением цвета раствора, выпадением или растворением осадка, выделением газа.

Вещества, с помощью которых открывают ионы, называются реагентами на соответствующие ионы, а происходящие при этом химические превращения – аналитическими реакциями.

Применяемые в качественном анализе реакции должны протекать быстро, отличаться высокой чувствительностью и по возможности являться необратимыми.



Чувствительность реакций определяет возможность обнаружения вещества в растворе. Она характеризуется пределом обнаружения (открываемым минимумом) , предельной концентрацией, предельным разбавлением и минимальным объёмом предельно разбавленного раствора.

Предел обнаружения – это минимальное количество компонента, которое может быть открыто с помощью данной аналитической реакции. Предел обнаружения выражают в микрограммах (мкг), обозначают g (1g = 0.001 мг = 10 –6 г).

Предельная концентрация – это наименьшая концентрация (C min), при которой определяемое вещество может быть обнаружено в растворе данной аналитической реакцией с вполне определенной вероятностью (P ), обычно равной единице. Предельную концентрацию обозначают C min, P и выражают в г/мл.

Предельное разбавление (V lim) – максимальный объём раствора, в котором может быть обнаружен 1 г данного вещества при помощи данной аналитической реакции. Предельное разбавление выражается в мл/г.

Предельная концентрация и предельное разбавление связаны соотношением

В качественном анализе применяются только такие реакции, предел обнаружения (открываемый минимум) которых не превышает 50 мкг.

По числу компонентов, взаимодействующих в данных условиях с применяемым реагентом и дающих аналитический сигнал, реакции и реагенты делятся на групповые, избирательные и специфические.

Групповыми называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал целая группа ионов, реагент называется групповым . Например, S 2– при pH = 5 осаждает Ag + , Pb 2+ , Bi 3+ , Cd 2+ , Sn 2+, 4+ и др. Следовательно, S 2– – групповой реагент, а осаждение сульфидов – групповая реакция. Групповые реакции в основном используют для разделения целых групп ионов.

В лабораторном практикуме для проведения систематического анализа катионов наиболее часто используется метод, основанный на разделении катионов по кислотно-основному принципу (табл. 14.1.1).

Таблица 11.1.1

Кислотно-основная классификация катионов

№ группы Название Катионы Групповой реагент
I Растворимая Na + , K + , NH 4 + нет
II Хлоридная Ag + , Pb 2+ , Hg 2 2+ 2н HCl осаждает соответствующие хлориды
III Сульфатная Ca 2+ , Ba 2+ , Sr 2+ 2н H 2 SO 4 осаждает соответствующие сульфаты
IV Амфотерная Al 3+ , Cr 3+ , Zn 2+ , Sn 2+ , Sn 4+ , As 3+ , As 5+ NaOH образует растворимые в избытке реагента гидроксиды
V Гидроксидная Fe 2+ , Fe 3+ , Mn 2+ , Mg 2+ , Bi 3+ , Sb 3+, Sb 5+ 2н NaOH осаждает соответствующие гидроксиды
VI Аммиакатная Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Hg 2+ 2н NH 4 OH образует гидроксиды, растворимые в избытке реагента с образованием аммиакатов

Избирательными (селективными) называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал ограниченное число компонентов. Такой реагент называется избирательным. Например, магнезиальная смесь (аммиачный раствор MgCl 2 и NH 4 Cl) образует белый мелкокристаллический осадок с двумя ионами PO 4 3– и AsO 4 3– . Избирательные реакции используют как для разделения, так и для обнаружения ионов.

Специфическими называются реакции, когда с реагентом в данных условиях взаимодействует и дает аналитический сигнал один компонент. Реагент называется специфическим. Такие реакции очень удобны для обнаружения ионов, но число их ограниченно. Некоторые специфические реагенты для идентификации катионов представлены в табл. 11.1.2.

Т.Н.ОРКИНА

ХИМИЯ

ХИМИЧЕСКИЙ И ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ

Учебное пособие

Оркина Т. Н. Химия.Химический и физико-химический анализ. / СПб.: Изд-во Политехн. Ун-та, 2012. – с.

Изложены цели и задачи современной аналитической химии - химических, физико-химических и физических методов анализа. Подробно изложены теоретические основы и методики проведения качественного и количественного анализа. Дается описание лабораторных работ по качественному анализу растворов и металлических сплавов, а также расчеты и методика проведения титриметрического (объемного) анализа. Рассмотрены основы физико-химического анализа - построение фазовых диаграмм, термический анализ металлических сплавов и построение диаграмм плавкости.

Пособие предназначено для студентов высших учебных заведений, обучающихся по различным направлениям и специальностям в области техники и технологии по направлению «Материаловедение», «Металлургия» и другим. Пособие может быть полезно для студентов, обучающихся по любым техническим специальностям в рамках дисциплины «Химия».

ВВЕДЕНИЕ

Аналитическая химия – это раздел химии, изучающий свойства и процессы превращения веществ с целью установления их химического состава. Установление химического состава веществ (химическая идентификация) – это ответ на вопрос о том, какие элементы или их соединения и в каких количественных соотношениях содержаться в анализируемом образце. Аналитическая химия развивает теоретические основы химического анализа веществ и материалов, разрабатывает методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления строения вещества. Обнаружение или, как говорят, открытие элементов или ионов, входящих в состав исследуемого вещества, составляют предмет качественного анализа . Определение концентраций или количества химических веществ, входящих в состав анализируемых объектов, составляет задачу количественного анализа . Качественный анализ обычно предшествует количественному, так как для выполнения количественного анализа требуется знать качественный состав анализируемого образца. Когда состав изучаемого объекта известен заранее, качественный анализ проводят по мере необходимости.

1. МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ.

Для обнаружения какого-либо компонента обычно используют так называемый аналитический сигнал. Аналитический сигнал этовидимые изменения в самом объекте исследования (образование осадка, изменение окраски, и т.д.) или изменение параметров измерительных приборов (отклонение стрелки прибора, изменение цифрового отсчета, появление линии в спектре и пр.). Для получения аналитического сигнала используют химические реакции разных типов (ионообменные, комплексообразования, окислительно-восстановительные), различные процессы (например, осаждение, выделение газов), а также разнообразные химические, физические и биологические свойства самих веществ и продуктов их реакций. Поэтому аналитическая химия располагает различными методами для решения своих задач.



Химические методы (химический анализ) основаны на проведении химической реакции между изучаемым образцом и специально подобранными реактивами. В химических методах аналитический сигнал, возникающий в результате химической реакции, наблюдают, главным образом, визуально.

Физико-химические методы анализа основаны на количественном изучении зависимости состав – физическое свойство объекта. Аналитическим сигналом служит электрический (потенциал, сила тока, сопротивление и др.) или любой другой параметр (температура фазовых превращений, твердость, плотность, вязкость, давление насыщенного пара и т.п.), связанный определенной функциональной зависимостью с составом и концентрацией объекта исследования. Физико-химические методы исследования обычно связаны с применением высокочувствительной аппаратуры. Достоинствами этих методов являются их объективность, возможность автоматизации и быстрота получения результатов. Примером физико-химического метода анализа является потенциометрическое определение рН раствора с помощью измерительных приборов потенциометров. Этот метод позволяет не только измерять, но и непрерывно следить за изменением рН при протекании в растворах каких-либо процессов.

В физических методах анализа аналитический сигнал, как правило, получают и регистрируют с помощью специальной аппаратуры. К физическим методам, прежде всего, относятся оптические спектроскопические методы анализа, основанные на способности атомов и молекул испускать, поглощать и рассеивать электромагнитное излучение. Регистрируя испускание, поглощение или рассеяние электромагнитных волн анализируемым образцом, получают совокупность сигналов, характеризующих ее качественный и количественный состав.

Между всеми тремя методами нет резкой границы, поэтому это деление несколько условно. Например, в химических методах пробу подвергают сначала действию какого-либо реагента, т.е. проводят определенную химическую реакцию, и только после этого наблюдают и измеряют физическое свойство. При анализе физическими методами наблюдение и измерение выполняют непосредственно с анализируемым материалом, используя специальную аппаратуру, причем химические реакции, если они проводятся, играют вспомогательную роль. В соответствии с этим в химических методах анализа главное внимание уделяют правильному выполнению химической реакции, в то время как в физико-химических и физических методах основной упор делается на соответствующее аппаратурное обеспечение измерения – определение физического свойства.

2. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ И ФИЗИКО-ХИМИЧЕСКИХ МЕТОДОВ.

Химические и физико-химические методы анализа классифицируют в зависимости от массы и объема анализируемых проб. По количеству вещества или смеси веществ (пробы), используемого для анализа, различают макро-, полумикро-, субмикро-, и ультрамикроанализ. В таблице 1 приведены диапазоны массы и объема растворов пробы, рекомендуемые отделением аналитической химии ИЮПАК (аббревиатура с английского Международного союза теоретической и прикладной химии).

Таблица 1

В зависимости от характера поставленной задачи различают следующие виды анализа.

1 . Элементный анализ – установление наличия и содержания отдельных элементов в данном веществе, т.е. нахождение его элементного состава.

2 . Фазовый анализ – установление наличия и содержания отдельных фаз исследуемого материала. Например, углерод в стали может находиться в виде графита или в форме карбидов железа. Задача фазового анализа – найти, сколько углерода содержится в виде графита и сколько в виде карбидов.

3 . Молекулярный анализ (вещественный анализ) - установление наличия и содержания молекул различных веществ (соединений) в материале. Например, в атмосфере определяют количество CO, CO 2 , N 2 , O 2 др. газы.

4 . Функциональный анализ – установление наличия и содержания функциональных групп в молекулах органических соединений, например аминогрупп (-NH 2), нитро(-NO 2), гидроксильных (-ОН), карбоксильных (-СООН) и других групп.

В зависимости от характера анализируемого материала различают анализнеорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с особенностями органических веществ. Даже первый этап анализа – переведение пробы в раствор - существенным образом различается для органических и неорганических веществ.

Основными этапами любого химического анализа сложных материалов являются следующие действия.

1. Отбор пробы для анализа. Средний состав пробы должен соответствовать среднему составу всей партии анализируемого материала.

2. Разложение пробы и переведение ее в раствор. Пробу растворяют в воде или кислотах, сплавляют с различными веществами или используют другие способы или химические воздействия.

3. Проведение химической реакции: Х + R = Р, где Х – компонент пробы; R – реагент; Р – продукт реакции.

4. Фиксация или измерение какого-либо физического параметра продукта реакции, реагента или определяемого вещества.

Рассмотрим более подробно два вида химического анализа – качественный и количественный анализ.

3. КАЧЕСТВЕННЫЙ АНАЛИЗ

Задачей качественного анализа является идентификация компонентов и определение качественного состава вещества или смеси веществ. Обнаружение или, как говорят, открытие элементов и ли ионов в составе исследуемого вещества производят, переводя их в соединение, обладающее какими-либо характерными свойствами, т. е. фиксируют появление аналитического сигнала. Происходящие при этом химические превращения называются аналитической реакцией . Вещество, с помощью которого проводят открытие – реактивом или реагентом .

Существуют разные приемы качественного анализа, требующие применения различных количеств исследуемого вещества в соответствии с таблицей 1. Например: в макроаналитическом методе берут около 1г вещества (0,5г для металлов и сплавов) и растворяют в 20-30 мл воды. Реакции проводят в пробирках (пробирочный анализ). В случае проведения микроанализа веществ берут примерно в 100 раз меньше по сравнению с макроанализом (миллиграммы твердого вещества и несколько десятых миллилитров раствора). Для открытия отдельных частей применяют высокочувствительные реакции, позволяющие обнаружить присутствие малых количеств элемента или иона. Выполнение реакций производят либо микрокристаллическим, либо капельным методом. Микрокристаллические реакции выполняют на предметном стекле и о присутствии элемента судят по форме образующихся кристаллов, которые рассматривают под микроскопом. Капельные реакции , сопровождающиеся изменением окраски раствора и образованием окрашенных осадков, выполняют на полоске фильтровальной бумаги, нанося на нее по капле исследуемые растворы и реактивы. Иногда капельные реакции проводят на специальной «капельной пластинке» - фарфоровой пластинке с углублениями, а также на часовом стекле или в фарфоровом тигле малого размера. Полумикроананализ (полумикрометод) занимает промежуточное положение между макро- и микроанализом. Необходимое для исследования состава количество вещества, примерно 20-25 раз меньше, чем при проведении макроанализа – около 50мг твердого вещества и 1мл раствора. В данном методе сохраняется система макроанализа и открытия ионов, но все реакции выполняют с малыми количествами вещества, пользуясь специальной техникой и аппаратурой. Например, реакции проводят в маленьких пробирках на 1-2мл, в которые растворы вводят с помощью пипеток. Отделение осадков производят только центрифугированием. Субмикроанализ и ультрамикроанализ проводятся по специальным методикам с использованием микроскопов разной степени увеличения, электронных микроскопов и другой аппаратуры. Их рассмотрение не входит в задачу данного пособия.

В качественном анализе химические реакции проводят чаще всего в растворе, так называемым «мокрым путем». Но иногда возможно проведение твердофазных реакций, т.е. реакций «сухим путем» . Вещество и соответствующие реактивы берут в твердом виде и для проведения реакций нагревают до высокой температуры. Примером таких реакций могут служить реакции окрашивания пламени солями некоторых металлов. Известно, что соли натрия окрашивают пламя в ярко-желтый цвет, соли калия – в фиолетовый, соли меди – в зеленый. По этой окраске можно обнаружить присутствие указанных элементов в исследуемом веществе. К реакциям «сухим путем» относятся также реакции образования окрашенных перлов – стеклообразных сплавов различных солей . Например буры – Na 2 B 4 O 7 10H 2 O или перлов двойной соли NaNH 4 HPO 4 4Н 2 О. Эти методы называются пирохимическими и широко используются для определения минералов и горных пород. Но в основном, в качественном анализе реакции проводятся «мокрым путем» между растворенными веществами.

Методика проведения качественного анализа

Первый этап любого анализа состоит в переведении пробы в раствор с помощью различных растворителей. При анализе неорганических веществ в качестве растворителей чаще всего используются вода, водные растворы кислот, щелочей, реже - других неорганических веществ. Затем проводят характерные реакции открытия ионов. Качественные реакций открытия ионов – это химические реакции, которые сопровождаются внешним эффектом (изменение окраски раствора, выделение газа, образование осадка), на основании которого можно судить, что реакция имеет место. Чаще всего имеют дело с водными растворами солей, кислот, оснований, между которыми протекают ионообменные реакции (реже – окислительно-восстановительные).

Та или иная аналитическая реакция должна выполняться в определенных условиях, зависящих от свойств образующихся соединений. При несоблюдении этих условий результаты открытия ионов могут оказаться недостоверными. Например, осадки, растворимые в кислотах, не выпадают из раствора при избытке кислоты. Поэтому необходимо соблюдать следующие условия проведения реакций.

1.Надлежащая среда исследуемого раствора, которая создается прибавлением кислоты или щелочи.

2.Определенная температура раствора. Например, реакции образования осадков, растворимость которых сильно возрастает с температурой, проводят на «холоду». Наоборот, если реакция протекает чрезвычайно медленно, требуется нагревание.

3.Достаточно высокая концентрация открываемого иона, так как при малых концентрациях реакция не проходит, т.е. реакция малочувствительна.

Понятие «чувствительность реакции» количественно характеризуется двумя показателями: открываемый минимум и предельное разбавление. Для экспериментального определения чувствительности реакцию многократно повторяют с исследуемыми растворами, постепенно уменьшая количество растворенного вещества и объем растворителя. Открываемый минимум (Υ) – это наименьшее количество вещества, которое может быть открыто посредством данной реакции при определенных условиях ее выполнения. Выражают в микрограммах (1Υ- миллионные доли грамма, 10 -6 г). Открываемый минимум не может полностью характеризовать чувствительность реакции, так как имеет значение концентрация открываемого иона в растворе. Предельное разбавление (1:G)характеризует наименьшую концентрацию вещества (иона), при которой его можно открыть посредством данной реакции; где G – массовое количество растворителя, приходящееся на единицу массы открываемого вещества или иона. В макроанализе и полумикрометоде применяют те реакции, чувствительность которых превышает 50Υ, а предельное разбавление 1: 1000.

При выполнении аналитических реакций следует учитывать не только чувствительность, но и специфичностьреакции – возможность открытия данного иона в присутствии других ионов. Открытие ионов посредством специфических реакций, производимое в отдельных порциях исследуемого раствора в произвольной последовательности, называется дробным анализом . Но специфических реакций не так много. Чаще приходится иметь дело с реактивами, дающими одинаковый или сходный эффект реакции со многими ионами. Например, хлорид бария осаждает из раствора карбонат- и сульфат- ионы в виде осадков ВаСО 3 и ВаSO 4 . Реактивы, дающие одинаковый аналитический сигнал с ограниченным числом ионов, называются избирательными или селективными . Чем меньше число ионов, открываемых данным реактивом, тем выше степень селективности реактива.

Иногда посторонние ионы не реагируют с данным реактивом, но уменьшают чувствительность реакции или изменяют характер образующихся продуктов. В этом случае надо учитывать предельное соотношение концентраций открываемого и постороннего ионов, а также использовать маскирующие средства (приемы или реактивы). Мешающий ион переводят в малодиссоциирующие соединения или комплексные ионы, его концентрация в растворе понижается, и этот ион уже не препятствует открытию анализируемых ионов. Все выше перечисленные особенности и приемы используются при разработке последовательности проведения химических реакций в процессе анализа. Если реакции, используемые при анализе, неспецифичны, и мешающее влияние посторонних ионов устранить нельзя, то применение дробного метода становиться невозможным и прибегают к систематическому ходу анализа .

Систематический ход анализа – это определенная последовательность реакций, разработанная с таким расчетом, чтобы открытие каждого иона производилось лишь после открытия и удаления всех мешающих этому открытию ионов. При систематическом ходе анализа из сложной смеси ионов производят выделение отдельных групп ионов, пользуясь сходным отношением их к действию некоторых реактивов, называемых групповым реагентом . Например, одним из групповых реагентов является хлорид натрия, который производит сходное действие на ионы Ag + , Pb 2+ , Hg 2 2+ . Действие хлорида натрия на растворимые соли, содержащие эти катионы, приводит к образованию осадков, нерастворимых в хлороводородной кислоте:

Ag + + Cl - = AgCl↓

Pb 2 + Cl - = PbCl 2 ↓

Hg 2 2+ + 2Cl - = Hg 2 Cl 2 ↓

Все остальные ионы, если подействовать HCl, перейдут в раствор, а три катиона Ag + , Pb 2+ и Hg 2 2+ будут отделены от других с помощью группового реагента NaCl. Применение групповых реагентов представляет большие удобства: сложная задача распадается на ряд более простых. Кроме того, если какая-либо группа ионов полностью отсутствует, то ее групповой реагент не даст с анализируемым раствором никакого осадка. В этом случае не имеет смысла проводить реакции на отдельные ионы этой группы. В результате достигается значительная экономия труда, времени и реактивов. Из вышесказанного следует, что в качественном анализе в основу классификации ионов положено различие в растворимости некоторых образуемых ими соединений; на основании этого различия основан метод отделения одной группы ионов от другой. Основная классификация катионов была введена выдающимся русским химиком Н.А. Меншуткиным (1871г.) и представлена в таблице.

В основу классификации анионов положена растворимость солей бария и серебра в соответствующих кислотах. Эта классификация не является строго установленной, так как различные авторы подразделяют анионы на различное число групп. Один из самых распространенных вариантов – подразделение изучаемых анионов на три группы, как показано в таблице 3. В противоположность катионам анионы в большинстве случаев не мешают обнаружению друг друга, поэтому к реакциям отделения анионов приходиться прибегать только в редких случаях. Чаще обнаружение анионов ведут дробным анализом, т.е. в отдельных порциях исследуемого раствора. При анализе анионов групповые реагенты обычно применяются не для разделения групп, а лишь для их обнаружения. Отсутствие в исследуемом растворе какой-либо группы значительно облегчает работу.

Таблица 2

Классификация катионов

Сульфиды раствормы в воде Сульфиды нераст
Карбонаты растворимы в воде Карбонаты нерастворимы в воде Сульфиды или (гидроксиды, образующиеся при их разл. водой) раств. в разб. кислотах Сульфиды нерастворимы в разбавленных кислотах
I группа II группа III группа IV группа V группа
К + ,Na + , NH 4 + Mg 2+ и др. Ва 2+ ,Са 2+ ,Sr 2+ и др. Al 3+ ,Cr 3+ ,Fe 3+ Fe 2+ ,Mn 2+ ,Zn 2+ Ni 2+ ,Co 2+ и др. а) I подгруппа (хлориды нерастворимы в воде) Аg + Hg 2 2+ ,Pb 2+ , б) II подгруппа (хлориды раст. в воде) Hg 2+ ,Cu 2+ , Cd 2+ ,Bi 3+ Сульфиды растворимы в (NH 4) 2 S 2 As 5+ ,As 3+ Sb 5+ ,Sb 3+ Sn 4+ ,Sn 2+ и др.
Группового реагента нет Групповой реагент (NH 4) 2 CO 3 Групповой реагент (NH 4) 2 S Групповой реагент Н 2 S в присут. НСl (для осаждения I подгруппы – НСl) Групповой реагент (NH 4) 2 S 2

Таблица 3

Классификация анионов

3.2. Лабораторные работы по теме «Качественный анализ»

Качественный анализ

Глава 10. КАЧЕСТВЕННЫЙ И КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ВЕЩЕСТВ

Аналитическая химия наука о методах определœения химического состава и структуры веществ.

Химический анализ лежит в базе современного химико-технологического контроля и установления государственных стандартов на выпускаемую продукцию.

Задача качественного анализа – определœение химического состава исследуемого соединœения.

Качественный анализ проводят химическими, физическими и физико-химическими методами. Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функцией состава. Так, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки.

Химические методы качественного анализа основаны на превращении анализируемого вещества в новые соединœения, обладающие определœенными свойствами. По образованию характерных соединœений элементов и устанавливается элементарный состав вещества. Так, ионы Cu 2+ можно обнаружить по образованию комплексного иона 2+ лазурно-синœего цвета. Катион NH 4 + обнаруживают по выделœению газообразного аммиака NH 3 ­ действие раствора щелочи при нагревании.

Качественные аналитические реакции по способу их выполнения делятся на реакции ʼʼмокрымʼʼ и ʼʼсухимʼʼ путем. Наибольшее значение имеют реакции ʼʼмокрымʼʼ путем. Для проведения их исследуемое вещество должно быть предварительно растворено. В качественном анализе находят применение только те реакции, которые сопровождаются какими-либо хорошо заметными внешними эффектами: изменением окраски раствора, выпадением или растворением осадка, выделœением газов с характерным запахом или цветом и т.п. Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями ʼʼоткрытияʼʼ, т.к. с их помощью обнаруживаются присутствующие в растворе ионы. Для отделœения одной группы ионов от другой или одного иона от другого применяются реакции осаждения.

Учитывая зависимость отколичества анализируемого вещества, объёма раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро- (1-10 г или 10-100 мл исследуемого вещества), полумикро- (0,05-0,5 г или 1-10 мл), микро- (0,001-10 –6 г или 0,1-10 –4 мл), и ультрамикроанализ и др.

Анализ ʼʼсухимʼʼ путем проводится с твердыми веществами. Он делиться на анализ методом растирания и пиротехнический анализ. Последний основан на утем проводится с твердыми веществами. тдельных операций химические методы качественного анализа делятся на макро-, микро-, полнагревании исследуемого вещества в пламени горелки. Рассмотрим реакции окрашивания пламени – летучие соли многих металлов при внесении их в несветящуюся часть пламени горелки окрашивают пламя в различные цвета͵ характерные для этих металлов: Li и Sr – карминово-красная окраска пламени, Na – интенсивно-желтая, K – фиолетовая, Rb и Сs – розово-фиолетовая, Ca – оранжево-красная, Ba – зелœеная, Cu и B – желто-зелœеная, Pb и As – бледно-голубая и т.д.

Чувствительность аналитических реакций – то наименьшее количество вещества (иона), ĸᴏᴛᴏᴩᴏᴇ можно открыть с помощью данного реагента. Количественно чувствительность реакций характеризуется тремя показателями: открываемым минимумом, пре­дельной концентрацией, пределом разбавления.

В аналитической практике определяемый ион обычно приходится открывать в присутствии других ионов. Реакции и реагенты, дающие возможность открывать данный ион в присутствии других, называются специфичными.

Качественный анализ - понятие и виды. Классификация и особенности категории "Качественный анализ" 2017, 2018.

  • - Качественный анализ

    Устройство ИК спектрометра Как правило, Ик-спектрометр работает по 2-х лучевой схеме: 2 параллельных световых потока пропускают через кювету с анализируемым образцом и кювету сравнения – это позволяет уменьшить погрешности, связанные с рассеянием, отражением и... .


  • - КАЧЕСТВЕННЫЙ АНАЛИЗ КАТИОНОВ

    КАЧЕСТВЕННЫЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ Способы выполнения аналитических реакций Аналитические реакции могут выполняться «сухим» и «мокрым» путем. В первом случае исследуемое вещество и реагенты берут в твердом состоянии и обычно осуществляют... .


  • - Качественный анализ в ТСХ

    Основные элементы установок ТСХ Тонкослойная хроматография Метод тонкослойной хроматографии (ТСХ), получивший в настоящее время широкое распространение, был разработан Н.А. Измайловым и М.С. Шрайбер в 1938 г. В методе ТСХ неподвижная твердая фаза тонким слоем... .


  • - Качественный анализ

    Электрохимические ячейки В вольтамперометрии используются ячейки, состоящие из поляризуемого рабочего и неполяризуемого электрода сравнения. Требования к рабочему электроду: § площадь рабочего электрода должна быть небольшой; § электрод должен быть поляризован... .


  • - Качественный анализ неорганических соединений

    Качественный анализ – это идентификация (обнаружение) компонентов анализируемых веществ и приблизительная количественная оценка их содержания в веществах и материалах. В качестве компонентов могут быть атомы и ионы, изотопы элементов и отдельные нуклиды, молекулы,...

  • 2024 english-speak.ru. Изучение английского языка.