Электризация через влияние. Тема. Электрические взаимодействия

Цели урока:

Обучающие

Развивающие

Воспитательные

1) Познакомить учащихся с понятием электрического взаимодействия и электрической силы.

2) Сформировать понятие наэлектризованного тела (заряженного) и познакомить со способами сообщения телу заряда.

3) Показать, что наэлектризованные тела действуют на твердые, жидкие и газообразные тела.

4) Показать, что в процессе трения электризуются оба тела.

5) Познакомить учащихся с тем, что электрическое взаимодействие проявляется как в притяжении, так и в отталкивании тел.

6) Познакомить учащихся с существованием 2-х видов заряда и их взаимодействии.

1) Развивать у учеников способность наблюдать.

2) Развивать умение планировать эксперимент с целью получения ответа на поставленный вопрос, анализировать диалектико-материалистический характер процесса познания: практика-критерий истины.

3) Приобщить к методу научного исследования: выделение проблемы, выдвижение гипотезы, планирование эксперимента, получение вывода.

1) Развивать познавательный интерес, любознательность.

2) Развивать активность.

3) Развивать самостоятельность.

4) Формирование личностного отношения к миру и месту человека в нём.

Ход урока

Мудрость - это совокупность истин,
добытых умом, наблюдением и
опытом и приложимых к жизни,
- это гармония идеи с жизнью.
И. А. Гончаров.

Актуализация темы.

Мы живем в мире электрических взаимодействий, сталкиваясь с ними в природе, практической деятельности. Примерами электрических взаимодействий в природе являются: молния, огни святого Эльма (демонстрация искрового и коронного разрядов). Непонимание природы электрических явлений порождало у людей страх, суеверия. С развитием науки люди смогли объяснить явления, научиться защищаться от них, и заставить работать на пользу людям. Теперь мы не мыслим свою жизнь без электричества. Приборы от электрической лампочки до компьютера работают за счет электрических явлений. Человек должен иметь элементарные представления о природе электрических явлений хотя бы для того, чтобы не ссориться с ними.

Актуализация знаний.

Что называется взаимодействием? (действие одного тела на другое, в результате которого тела изменяют скорость).

Что называется силой? (сила - количественная мера взаимодействия).

Что такое гравитационная сила? (сила, с которой притягиваются тела вследствие того, что обладают массой).

Постановка проблемы.

Учитель. Проведём опыт: потрём пластмассовую ручку или расчёску о шерсть и поднесём к кусочкам бумаги. Они притянулись. Какой вид взаимодействия вы наблюдаете? Может ли это быть гравитационное взаимодействие?

Выдвижение гипотезы:

1. Взаимодействующие тела имеют массы и могут вступать в гравитационные взаимодействия.

На столах приборы: магнит, гвоздики, кусочки оргстекла, кусочки бумаги. При помощи опытов проверьте справедливость вашей гипотезы. (поднести незаряженную палочку к кусочкам бумаги, взаимодействия нет). Вывод: данное взаимодействие не является гравитационным.

2. Взаимодействие не может быть магнитным?

Проверка гипотезы опытами (поднести магнит к гвоздям и наблюдать магнитное взаимодействие, при поднесении магнита к бумаге его не наблюдаем). Вывод: это взаимодействие не является магнитным.

Учитель: вы открыли новый вид взаимодействия - электрическое взаимодействие, а сила, с которой палочка, потёртая о ткань действовала на листки бумаги, называется электрической силой.

Введение определений.

Про тела, способные к электрическим взаимодействиям говорят, что они наэлектризованы. Или им сообщён электрический заряд.

Учитель: Слайд 4. обратите внимание, наэлектризовать тело можно трением (соприкосновением), а также при контакте заряженного тела с незаряженным.

Постановка проблемной задачи категории "ситуация неопределённости".

Мы видели, что к наэлектризованным телам могут притягиваться лёгкие тела.

Как вы думаете, могут ли твёрдые тела большой массы (например, деревянная линейка) притягиваться к наэлектризованным телам?

Выдвигают гипотезу, что да. Как проверить? Предлагают поднести заряженную палочку к линейке. Она неподвижна. Делают вывод, что - нет.

Учитель: а всё ли мы учли в нашем эксперименте? Что могло помешать линейке устремиться навстречу заряженной палочке? Предположение учащихся: сила трения покоя. Учитель: как её можно свести к минимуму? Ученики: подвесить линейку или поставить на круглодонную колбу, перевёрнутую вверх дном. Проводят эксперимент, и делают вывод, что твёрдые тяжёлые тела притягиваются к наэлектризованным телам.

Поисковое задание.

Слайд 6, 7.

Могут ли жидкости притягиваться к наэлектризованным телам? Как проверить? (поднести заряженную палочку к струе жидкости). Вывод:

Жидкости притягиваются к заряженным телам. (Факт, что газы тоже обладают способностью притягиваться к наэлектризованным телам).

Учитель: только лишь оргстекло может наэлектризовываться? Может эту способность имеют и другие твёрдые тела? Как это проверить? (Учащиеся предлагают способ проверки: надо потереть эти тела о ткань и поднести их к кусочкам бумаги).

Вывод: способностью электризоваться обладают многие тела.

Учитель: в результате трения заряжается одно из тел (палочка). А что происходит со вторым телом?

(Учащиеся предлагают способ проверки: поднести второе тело к кусочкам бумаги или наэлектризовать латунную трубку при трении о резину и поднести резину кусочкам бумаги).

Вывод: при трении электризуются два тела.

Выводы учащихся (запись в тетрадях). Слайд 3, 4.

Тела, которые действуют на окружающие предметы электрической силой, называют наэлектризованными, или заряженными.

Наэлектризовать тело можно трением (соприкосновением) или контактом заряженного тела с незаряженным.

При трении электризуются 2 тела.

Учитель: А как будут взаимодействовать между собой тела, заряженные:

  • оба от стеклянной палочки,
  • оба от эбонитовой палочки,
  • одно от стеклянной палочки, другое от эбонитовой.

Проведём эксперимент. Объясняет устройство электростатического маятника и показывает способ его заряда (контакт гильзы маятника с заряженной палочкой).

Заряжаем гильзы от стеклянной палочки и сближаем их. Наблюдаем отталкивание.

Заряжаем гильзы от эбонитовой палочки и сближаем их. Наблюдаем отталкивание.

Заряжаем одну гильзу от эбонитовой палочки, другую от стеклянной. Наблюдаем притяжение.

Учитель: Как объяснить такую разницу во взаимодействии? Выслушать мнение учащихся и дать верный ответ. Стекло и эбонит при трении о ткань электризуются различно (получают разные заряды). Принято считать, что стекло при трении о шёлк приобретает + заряд, а эбонит при трении о шерсть приобретает - заряд.

В первом опыте гильзы, получив + заряды оттолкнулись.

Во втором опыте гильзы, получив - заряды оттолкнулись.

В третьем опыте гильзы, получив + и - заряды притянулись.

Вывод: одноимённые заряды отталкиваются, а разноимённо заряженные тела притягиваются.

Слайды 9, 10, 11.

Закрепление материала.

В зависимости от оставшегося времени провести фронтальный опрос по определениями тестам.

Домашнее задание.

25, 26 учебника, ответить на вопросы.

Работа по вариантам:

1 вариант - приготовить сообщения об истории открытия электричества,

2 вариант - работа над творческим проектом по теме "Электростатика".

УРОК 1/1

Тема. Электрические взаимодействия

Цель урока: ознакомить учащихся с электрическими взаимодействиями; разъяснить им физический смысл закона сохранения заряда и закона Кулона.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Первые шаги к разгадке природы электричества были сделаны во время изучения электрических разрядов, которые возникают между разноименно заряженными телами. Такие разряды напоминают крошечную молнию.

Для того чтобы понять появление всех этих искр, ознакомимся с одним из электрических явлений. Возьмем пластмассовый гребешок или авторучку и проведем ею несколько раз по сухим волосам или шерстяному свитеру. Как не странно, но после такого простого действия пластмасса приобретет нового свойства: начнет притягивать мелкие кусочки бумаги, другие легкие предметы и даже тонкие струйки воды.

Из выполненных опытов и наблюдений можно сделать вывод:

Ø явления, в которых тела приобретают свойства притягивать другие тела, называют электризацией.

В XVII веке немецкий ученый Отто фон Герике обнаружил, что электрическая взаимодействие может быть не только притягуванням, но и отталкиванием. В начале XVIII века французский ученый Шарль Дюфе объяснил притяжение и отталкивание наэлектризованных тел существованием двух типов электрических зарядов:

Ø если тела имеют электрические заряды того же типа, они отталкиваются, а если разных типов, то притягиваются.

Тела, имеющие способность к электрических взаимодействий, называют наелектризованими. Если наэлектризованное тело, говорят, что оно имеет электрический заряд.

Ø Электрический заряд - это физическая величина, характеризующая интенсивность электромагнитных взаимодействий тел или частиц.

Заряды разных типов назвали положительными и отрицательными. Электрический заряд наэлектризованной стеклянной палочки, потертой о шелк, назвали положительным, а заряд ебонітової палочки, потертой о мех, - отрицательным.

Тела, не имеющие электрического заряда, называют незаряженными, или электрически нейтральными. Но иногда и такие тела обладают способностью к электрическим взаимодействиям.

Во время электризации тело потеряло часть своих электронов, заряжается положительно, а тело приобрело лишних электронов - отрицательно. Общее же количество электронов в этих телах остается неизменной.

При электризации тел выполняется очень важный закон - закон сохранения заряда:

Ø в электрически изолированной системе тел алгебраическая сумма зарядов всех тел остается неизменной.

Этот закон не утверждает, что суммарные заряды всех положительно заряженных и всех отрицательно заряженных частиц должны каждый отдельно храниться. Во время ионизации атома в системе образуются две частицы: положительно заряженный ион и отрицательно заряженный электрон. Суммарные положительный и отрицательный заряды при этом увеличиваются, же полный электрический заряд остается неизменным. Нетрудно увидеть, что всегда сохраняется разница между общим числом всех положительных и отрицательных зарядов.

Закон сохранения электрического заряда выполняется и тогда, когда заряженные частицы испытывают превращения. Так, во время столкновения двух нейтральных (не имеют электрического заряда) частиц могут рождаться заряженные частицы, однако алгебраическая сумма зарядов порожденных частиц при этом равна нулю: вместе с положительно заряженными частицами рождаются и отрицательно заряженные.

Французский ученый Шарль Кулон исследовал, как зависит сила взаимодействия между заряженными телами от значений зарядов тел и от расстояния между ними. В своих опытах Кулон не учитывал размеры тел, которые взаимодействуют.

Заряд, помещенный на теле, размеры которого малы по сравнению с расстояниями до других тел, с которыми оно взаимодействует, называют точечным зарядом.

Закон Кулона, открытый 1785 p ., количественно описывает взаимодействие заряженных тел. Он является фундаментальным законом, то есть установленный с помощью эксперимента и не вытекает ни из какого другого закона природы.

Ø Неподвижные точечные заряды q 1 и q 2 взаимодействуют в вакууме с силой F , прямо пропорциональной модулям зарядов и обратно пропорциональной квадрату расстояния r между зарядами:

Значение коэффициента пропорциональности k зависит от выбора системы единиц.

Единица электрического заряда в СИ названа в честь Кулона - это 1 кулон (Кл).

Коэффициент пропорциональности k в законе Кулона численно равна k = 9·10 9 Н·м2/Кл2. Физический смысл этого коэффициента заключается вот в чем: два точечных заряда по 1 Кл каждый, находятся на расстоянии 1 м друг от друга, взаимодействуют с силой, равной 9·109 Н.

ВОПРОС К УЧАЩИМСЯ В ХОДЕ ИЗЛОЖЕНИЯ НОВОГО МАТЕРИАЛА

Первый уровень

1. Как можно определить, заряженные тела?

2. В каких случаях заряженные тела притягиваются, а в каких - отталкиваются?

3. При каких условиях выполняется закон сохранения электрического заряда?

4. От чего зависит электрическая сила взаимодействия заряженных тел?

5. В чем сходство и различие закона всемирного тяготения и закона Кулона?

Второй уровень

1. Почему притяжение кусочков бумаги натертым расческой нельзя объяснить действием сил тяжести, упругости и веса?

2. Зависит ли сила электрического взаимодействия от расстояния между заряженными телами? Подтвердите ваш ответ примером.

3. С помощью какого опыта можно проиллюстрировать закон сохранения электрического заряда?

4. Как изменится сила кулоновского взаимодействия двух точечных зарядов при увеличении каждого заряда в 3 раза, если расстояние между ними уменьшить в 2 раза?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

1. Почему электрическое отталкивание обнаружили почти через две тысячи лет после того, как было обнаружено притяжения?

Два тела испытывают электрического притяжения, если заряжен только одно из тел, причем зарядом любого знака. А электрическое отталкивание проявляет себя только тогда, когда оба тела заряжены, причем обязательно одноименно.

2. Когда с первой капельки миллиард электронов переместили на вторую, между ними возникла сила электрического взаимодействия. Сколько электронов необходимо переместить с первой капельки на вторую, чтобы эта сила увеличилась в 4 раза?

3. На каком расстоянии находятся друг от друга точечные заряды 4 и 6 нКл, если сила их взаимодействия равна 6 мН?

4. Сколько электронов надо «перенести» с одной пылинки на другую, чтобы сила кулоновского притяжения между порошинами на расстоянии 1 см равна 10 мкН? (Ответ: 2,1·109)

5. Заряды двух одинаковых маленьких металлических шариков равны q 1 = -2 нКл и q 2 = 10 нКл. После соприкосновения шариков их развели на предыдущую расстояние. Во сколько раз изменился модуль силы взаимодействия между ними?

Пусть расстояние между шариками равна r . Тогда модуль силы взаимодействия между ними изменился от к Здесь q - заряд каждого из шариков после соприкосновения. Согласно закону сохранения заряда 2q = q 1 + q 2 . Следовательно,

Ответ: уменьшился в 1,25 раза.

6. На шелковой нитке висят два заряженных шарика массой 20 мг каждая (см. рисунок). Модули зарядов шариков 1,2 нКл. Расстояние между шариками 1 см. Чему равна сила натяжения нити в точках А и В? Рассмотрите случаи одноименных и разноименных зарядов. (Ответ: сила натяжения нити в точке А равна 0,39 мН; В точке В для одноименных зарядов 0,33 мН, а для разноименных - 66 мкН.)

ЧТО МЫ УЗНАЛИ НА УРОКЕ

Явления, в которых тела приобретают свойства притягивать другие тела, называют электризацией.

Электрический заряд - это физическая величина, характеризующая интенсивность электромагнитных взаимодействий тел или частиц.

В электрически изолированной системе тел алгебраическая сумма зарядов всех тел остается неизменной:

· Заряд, помещенный на теле, размеры которого малы по сравнению с расстояниями до других тел, с которыми оно взаимодействует, называют точечным зарядом.

· Неподвижные точечные заряды q 1 и q 2 взаимодействуют в вакууме с силой F , прямо пропорциональной модулям зарядов и обратно пропорциональной квадрату расстояния r между зарядами:

Домашнее задание

Рів1 № 1.8; 1.9; 1.10; 1.11.

Рів2 № 1.31; 1.32; 1.34, 1.35.

Рів3 № 1.54, 1.55; 1.56; 1.57.



Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

МАОУ «Экспериментальный лицей « Научно-образовательный комплекс»

Учебное пособие по физике

(5-6 класс)

Электромагнитные и световые явления.

Составитель:

учитель физики

Введение.

Дорогие ребята, мы приступаем к изучению одной из самых важных и интересных наук – физике. С момента появления сознания, человек всегда пытался понять: как устроен мир, в котором он живет, почему идет дождь, сверкает молния, восходит и заходит Солнце, лето сменяется зимой, любое тело непременно падает на Землю. Поиски ответов на многочисленные вопросы и стали основой науки о природе – физики. Но человек не просто нашел ответы на вопросы, он открыл законы природы и заставил их работать на себя. Благодаря развитию физики появились новые механизмы, устройства, значительно упрощающие жизнь человека, а открытие электрических явлений позволило перейти человечеству на новую ступень развития цивилизации. Итак, начинается наше знакомство с удивительным миром науки.

Тема 1. Электрические явления.

Электрическое взаимодействие. Электризация тел трением.

Возьмём пластмассовую линейку или авторучку и проведём ею несколько раз по сухим волосам или листочку бумаги. Как ни удивительно, но после такого простого действия пластмасса приобретёт новое свойство: начнёт притягивать мелкие кусочки бумаги, другие лёгкие предметы и даже тонкие струйки воды (см. рисунок).

Такие явления были известны ещё до нашей эры. Для опытов по электризации трением брали янтарь и натирали его шерстью. После этого и янтарь, и шерсть начинали притягивать к себе сухие травинки и пылинки. Янтарь по-гречески «электрон». Отсюда и произошли слова электричество и наэлектризованные тела.

Наэлектризованные тела могут не только притягиваться, они могут и отталкиваться. Проведём опыты. Натрём палочку из эбонита шерстяной варежкой, а палочку из стекла – шёлковым платком. Подвесив палочки на нитях, увидим, что эбонит и шерсть, а также стекло и шёлк притягивают друг друга (см. рисунок).

Теперь поменяем пары тел. Мы видим, что эбонит и шёлк, а также стекло и шерсть отталкивают друг друга (см. рисунок).

Увидеть взаимодействие заряженных тел можно с помощью простого прибора – электрического султана. На металлическом стержне укреплены легкие полоски бумаги. Коснувшись стержня заряженным телом, мы передаем заряд и стержню и лепесткам султанчика, которые начинают отталкиваться друг от друга. Наблюдение двух видов взаимодействия натолкнуло ученых на мысль о существовании двух видов электрических зарядов. Сейчас два рода зарядов мы называем:

Символом «q» обозначена физическая величина «электрический заряд» . Единицей для измерения заряда служит 1 Кулон (коротко: 1 Кл). Проведя несложные эксперименты, легко заметить, что сила взаимодействия заряженных тел бывает различной: больше или меньше. Это объясняют тем, что заряд, который приобретают тела в процессе электризации, может быть больше или меньше.

Для обнаружения наэлектризованных тел и сравнения их зарядов служит прибор электроскоп. Его внешний вид вы видите на рисунке.

Металлический корпус (1) спереди закрыт стеклом (2). Внутрь прибора вставлен металлический стержень (3) с легкой подвижной стрелкой (4). От корпуса стержень отделён круглой пластмассовой втулкой (5). Если верхней части стержня коснуться наэлектризованным телом, то стрелка оттолкнется от стержня тем сильнее, чем больше заряд тела.

Лабораторная работа №1

Наблюдение электризации различных тел и их взаимодействия.

Цель: Наблюдать электризацию различных тел.

Приборы и материалы: Пластмассовая линейка, бумага, кусочки ткани, резина.

Ход работы: используя предоставленные материалы, пронаблюдайте за явлением электризации, напишите вывод.

Атомы состоят из ещё меньших частиц трёх видов. В центре атома имеется ядро, образованное протонами и нейтронами . Вокруг ядра быстро движутся электроны, образуя так называемые электронные облака. Количество протонов в ядре равно количеству электронов, движущихся вокруг него. Количество нейтронов может быть разным.

Масса протона приблизительно равна массе нейтрона. По сравнению с их массами масса электрона пренебрежимо мала. Электроны относятся к так называемым отрицательно заряженным частицам, протоны – к положительно заряженным частицам. Нейтроны – к незаряженным или электронейтральным частицам.

Частицы ядра прочно связаны друг с другом особыми ядерными силами. Притяжение электронов к ядру гораздо слабее взаимного притяжения протонов и нейтронов, поэтому электроны (в отличие от частиц ядра – протонов и нейтронов) могут отделяться от своих атомов и переходить к другим (см. рисунок).

В результате переходов электронов образуются ионы – атомы или группы атомов, в которых число электронов не равно числу протонов. Если ион содержит отрицательно заряженных частиц больше, чем положительно заряженных, то такой ион называют отрицательным. В противоположном случае ион называют положительным. В верхней части рисунка показана потеря атомом электрона, то есть образование положительного иона. В нижней части рисунка – образование из атома отрицательного иона. Ионы очень часто встречаются в веществах, например, они есть во всех без исключения металлах. Причина заключается в том, что один или несколько электронов от каждого атома металла отделяются и движутся внутри металла, образуя так называемый электронный газ. Именно из-за потери электронов, то есть отрицательных частиц, атомы металла становятся положительными ионами. Это справедливо для металлов в любом состоянии – твёрдом, жидком или газообразном (например, для паров ртути).

При трении тел друг о друга «трутся» именно электронные облака атомов, из которых эти тела состоят. А так как электроны слабо связаны с ядрами своих атомов, то электроны могут отделяться от «своих» атомов и переходить на другое тело. В результате на нём возникает избыток электронов (и тело приобретает отрицательный заряд), а на первом теле – недостаток электронов (и оно становится положительно заряженным).

Итак, электризация трением объясняется переходом части электронов от одного тела к другому, в результате чего тела заряжаются разноимённо. Поэтому тела, наэлектризованные трением друг о друга, всегда притягиваются.

Кроме электризации трением, которую мы только что объяснили, существует также и электризация индукцией (от лат. «индукцио» – наведение, возникновение). Рассмотрим её на опыте, – см. рисунок.

Имеются два незаряженных металлических шара, которые касаются друг друга (а). Затем к одному из них подносят, не касаясь его, наэлектризованную палочку (б), после чего второй шар отодвигают (в). Теперь палочку можно убрать, – шары будут разноимённо заряженными.

Объясним опыт. Сначала металлические шары не были заряжены. Это значит, что электронный газ присутствовал в шарах в равных количествах (а). Поскольку палочка стеклянная, считаем её заряд положительным. Она притягивает отрицательно заряженные частицы шаров – электроны. Поэтому электронный газ «перетекает» в левую часть левого шара, и в этом месте образуется скопление отрицательного заряда (б).

Положительные ионы металла прочно связаны друг с другом (они и есть металл), поэтому никуда не «перетекут». Значит, во всех остальных частях шаров возникнет недостаток электронов, то есть положительный заряд. Если в этот момент, не убирая палочки, раздвинуть шары (в) и лишь затем убрать её, шары останутся разноимённо заряженными (г).

Итак, электризация индукцией объясняется перераспределением электронного газа между телами (или частями тела), в результате чего тела (или части тела) заряжаются разноимённо.

По способности проводить электрический заряд все вещества делятся на два вида. Диэлектрики – вещества, не имеющие свободных заряженных частиц и потому не проводящие заряд от одного тела к другому. Проводники – тела и вещества со свободными заряженными частицами, которые могут перемещаться, перенося заряд в другие части тела и к другим телам.

Различные тела можно наэлектризовать по-разному: передать им положительный или отрицательный заряд, сделать его большим или малым. После этого тела будут по-разному действовать на другие тела: отталкивать или притягивать их, делать это сильнее или слабее. Но как одно тело «узнаёт» заряд другого (например, чтобы «знать»: притягивать его или отталкивать)? Для ответа на этот вопрос рассмотрим понятие «электрическое поле».

Наэлектризуем одноимённо металлический шар на пластмассовой подставке и лёгкий пробковый или пенопластовый шарик на нити (назовём его пробным шариком). Будем переносить его в различные точки пространства вокруг большого шара (см. рисунок). Мы заметим, что в каждой точке пространства вокруг наэлектризованного тела обнаруживается сила, действующая на пробный шарик.

О том, что существует сила, мы судим по отклонению нити шарика от вертикали. По мере удаления от заряженного шара пробный шарик отклоняется всё слабее, следовательно, действующая на него сила становится всё меньше (сравните положения а, б, в).

Для следующего опыта используем магнит и стальной шарик, который положим на горизонтальную поверхность стола. Приблизим магнит к шарику сверху, и он незамедлительно покатится по столу вслед за магнитом. Следовательно, в каждой точке пространства вокруг намагниченного тела есть сила, действующая на стальной шарик.

Итак, в каждой точке пространства вокруг наэлектризованных или намагниченных тел существует так называемое силовое поле, способное воздействовать на другие тела. Заметим, что действие силы тяжести также обнаруживается во всех точках пространства вокруг Земли. Поэтому по аналогии говорят, что в пространстве вокруг планет также существует силовое поле; его называют гравитационным полем.

Электрический ток.

Открытие электрически заряженных частиц и их взаимодействия изменило мир, в котором мы с вами живем после того, как были обнаружены удивительные явления, возникающие при упорядоченном движении заряженных частиц, так был открыт электрический ток.

Электрический ток – это направленное (упорядоченное) движение заряженных частиц: электронов и/или ионов.

Рассмотрим, как возникает электрический ток в металлическом проводнике, соединяющем заряженный и нейтральный электроскопы. При возникновении кратковременного тока, часть заряда переходит с одного электроскопа на другой. То есть, в проволоке короткое время существовал электрический ток, образованный движущимися электронами.

Познакомимся теперь с устройствами, предназначенными для создания долговременного электрического тока, – источниками электроэнергии (иногда говорят – источниками тока, но это менее желательный термин).

Известно много видов источников электроэнергии. Простейшие из них –гальванические элементы (1, 2, 3). Они превращают свою внутреннюю (химическую) энергию в энергию электрического тока. Аналогичное превращение энергии происходит и в аккумуляторах (4). Но после того, как энергия аккумулятора иссякнет, его можно вновь зарядить, и он опять будет служить источником электроэнергии. Образно выражаясь, обычные гальванические элементы – это «одноразовые», а аккумуляторы – «многоразовые» источники энергии.

Кроме одиночных аккумуляторов и гальванических элементов часто встречаются их батареи – несколько элементов, соединённых вместе. Цифрой 2 обозначена батарея гальванических элементов – «плоская батарейка», а цифрой 4 – батарея аккумуляторов для автомобиля. Цифрой 5 обозначен выпрямитель или блок питания , служащий источником электроэнергии для электронных приборов – ноутбуков, телефонов. Он берёт энергию от домашней электросети.

Любой источник электроэнергии, обязательно имеет не менее двух полюсов – металлических проводников, предназначенных для присоединения потребителей электроэнергии. Они называются положительный и отрицательный, обозначенные знаками «+» и «–».

Назначение источника электроэнергии – создание и долговременное поддержание неодинаковой электризации своих полюсов. Рассмотрим это на конкретном примере (см. рисунок).

Присоединим к «батарейке» лампочку от карманного фонарика. Избыточные электроны, всегда имеющиеся на отрицательном полюсе, в момент соединения контактов двинутся к положительному полюсу батарейки. Это приведёт к частичной нейтрализации зарядов на полюсах. Поэтому если внутри батарейки электроны под воздействием каких-либо сторонних сил не будут вновь попадать на отрицательный полюс, ток быстро прекратится, и лампочка погаснет. Но этого не происходит, значит, ток есть и внутри батарейки.

Обратите внимание: снаружи источника электроны движутся от «–» к «+», как и должны двигаться отрицательные частицы, находящиеся в электрическом поле. Однако внутри источника электроны движутся от «+» к «–». Такое движение вопреки силам электрического поля возможно лишь под воздействием так называемых сторонних сил , которые не имеют отношения к силам электрического поля; они возникают и совершают работу за счёт внутренней (химической) энергии батарейки.

Исторически так сложилось, что току приписывают направление от «+» источника к его «–» через потребители. Физики об этом договорились несколько веков назад, когда не знали о существовании электронов. Тогда же появилось и не вполне удачное название «источник тока», так как теперь мы знаем, что у электрического тока нет «истоков» и «стоков»: ток циркулирует по проводникам, подобно воде в замкнутой трубе с насосом Как вы думаете, как можно узнать – есть ли в проводнике ток? Заглянуть внутрь проводника невозможно, но, оказывается, это и не нужно. Прохождение тока по проводнику всегда сопровождается хотя бы одним из особых явлений – действий тока. Всего известно три действия тока: магнитное, химическое и тепловое.

Слева вы видите опыт, иллюстрирующий магнитное действие тока . К источнику электроэнергии (на рисунке он не показан) при помощи двух проводов подключим катушку с проволокой и стальным стержнем внутри. При включении тока катушка становится магнитом и начинает притягивать стальные предметы (например, гвозди).

Магнитное действие тока наблюдается вокруг любых проводников: толстых или тонких, прямых или свитых в спираль, горячих или холодных, твёрдых, жидких или газообразных.

Слева изображён опыт, иллюстрирующий химическое действие тока . В стакан с раствором сульфата меди CuSO4 опустим два угольных стержня. Через несколько минут на стержне, подключённом к «–», образуется тонкий слой ярко-красного цвета. Это чистая медь, выделившаяся из раствора. Поскольку произошло явление, при котором одно вещество (сульфат меди) превратилось в другое (чистую медь), значит, мы видели химическую реакцию.

Химическое действие тока, как правило, наблюдается в жидких проводниках и сравнительно реже – в газообразных. В твёрдых проводниках химические реакции протекать не могут, так как в них отсутствуют подвижные ионы (то есть «носители» химических свойств вещества).

Тепловое действие тока встречается, например, в утюгах, электрокаминах и лампах. Утюг горяч настолько, что нельзя притронуться рукой; спирали электрокамина нагреты ещё сильнее: до «красного каления», а спираль лампочки – даже до «белого каления». Жидкие и газообразные проводники также нагреваются при прохождении через них тока.

9. Сделайте вывод.

Мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления.

Чем больше угол, на который отклоняется луч, переходя из вакуума в среду, тем больше показатель преломления среды. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

Закон преломления света. Чтобы рассмотреть этот закон, введём определения. Угол между падающим лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом падения (a). Аналогично, угол между преломлённым лучом и перпендикуляром к границе раздела двух сред в точке излома луча назовём углом преломления (g).

Используем качественную трактовку закона преломления света: при переходе света в оптически более плотную среду луч отклоняется к перпендикуляру к границе раздела сред. И наоборот. Количественно закон мы с вами изучим в старших классах.

Принцип обратимости световых лучей. При отражении или преломлении света падающий и отражённый лучи всегда можно поменять местами. Это означает, что ход лучей не изменится, если изменить их направления на противоположные. Многочисленные опыты подтверждают: при этом «траектория» хода лучей не меняется (см. чертёж).

Для пояснений обратимся к чертежам. Слева показано, что лучи, идущие параллельно главной оптической оси собирающей линзы, после неё «сходятся», проходя через точку F – действительный главный фокус собирающей линзы. Справа показано прохождение лучей света через рассеивающую линзу параллельно её главной оптической оси. Лучи после линзы «расходятся» и кажутся исходящими из точки F", называемой мнимым главным фокусом рассеивающей линзы. Он не действительный, а мнимый потому, что через него лучи света не проходят: там пересекаются лишь их воображаемые (мнимые) продолжения.

В школьной физике изучаются только так называемые тонкие линзы, которые вне зависимости от их симметричности «в разрезе» всегда имеют два главных фокуса, расположенные на равных расстояниях от линзы.

Линзой можно не только собирать или рассеивать лучи. При помощи линз можно получать увеличенные и уменьшенные изображения предметов. Например, благодаря собирающей линзе на экране получается увеличенное и перевёрнутое изображение золотой статуэтки (см. рисунок).

Опыты показывают: отчётливое изображение возникает, если предмет, линза и экран расположены на определённых расстояниях друг от друга. В зависимости от них изображения могут быть перевёрнутыми или прямыми, увеличенными или уменьшенными, действительными или мнимыми.

Ситуация, когда расстояние d от предмета до линзы больше её фокусного расстояния F, но меньше двойного фокусного расстояния 2F, описана во второй строке таблицы. Именно это мы и наблюдаем со статуэткой: её изображение действительное, перевёрнутое и увеличенное. Если изображение действительное, его можно спроецировать на экран. При этом изображение будет видно из любого места комнаты, из которого виден экран. Если изображение мнимое, то его нельзя спроецировать на экран, а можно лишь увидеть глазом, располагая его определённым образом по отношению к линзе (нужно смотреть «в неё»).

Лабораторная работа № 7

Изучение изображений, даваемых собирающей линзой.

Цель: Изучить изображения, даваемые собирающей линзой.

Приборы и материалы: собирающая линза, электрическая лампа, источник тока, соединительные провода, экран, линейка.

Ход работы.

1. Получая, изображение удаленного источника, определите фокусное расстояние линзы.

2. Изменяя расстояние между лампой и линзой, определите тип изображения при различных положениях лампы.

3. Результаты наблюдений занесите в таблицу.

4.сделайте вывод.

Опыты показывают, что рассеивающие линзы дают уменьшенное прямое мнимое изображение при любом расстоянии от предмета до линзы.

Лучи, испущенные предметом и прошедшие через лупу, расходятся (см. чертёж). От кончика пламени мы провели «красные» лучи. Один – параллельно главной оптической оси линзы, второй – через её центр. Первый луч после преломления в линзе пройдёт через её фокус, а второй луч не изменит направление распространения. От основания свечи отходят два «синих» луча. Они проходят так же, как и красные – параллельно главной оптической оси линзы и через её оптический центр. И «красные», и «синие» лучи являются расходящимися. Поэтому лупа не может создавать изображений на экране; их нужно наблюдать только оптическим прибором: глазом, фотоаппаратом и т. п.

Проектор. В отличие от лупы, этот прибор предназначен для получения действительных изображений, которые можно спроецировать на экран и сделать видимыми многим зрителям одновременно (см. чертёж). Свет лампы 1 при помощи вогнутого зеркала 2 направляется на слайд 3. Он расположен между фокусом и двойным фокусом собирающей линзы 4. Поэтому на экране 5 получается увеличенное действительное изображение.

Обратите внимание: красные лучи от верхней части слайда попадают в нижнюю часть экрана. И наоборот, синие лучи от нижней части слайда попадают в верхнюю часть экрана. Поэтому изображение на слайдах должно располагаться «вверх ногами».

Глаз. Орган зрения человека является сложным оптическим прибором. Основные части глаза: 1 – склера (плотная наружная оболочка), 2 – роговица (передняя более выпуклая прозрачная часть склеры), 3 – радужная оболочка, 4 – хрусталик, 5 – мышца, 6 – сетчатка (светочувствительная внутренняя задняя поверхность склеры), 7 – зрительный нерв.

Свет от рассматриваемого предмета, попадая в глаз, проходит через хрусталик. Он является собирающей линзой, поэтому на сетчатке образуется действительное изображение предмета. Светлые и тёмные части, из которых оно образовано, по-разному воздействуют на нервные окончания, расположенные на сетчатке. Эти воздействия по зрительному нерву попадают в головной мозг, который «переворачивает» изображение и распознаёт его.

Одним из особенных свойств хрусталика является его упругость. Если окружающие его мышцы напрягаются, то хрусталик растягивается и становится менее выпуклым. При этом его преломляющая способность уменьшается, и мы можем чётко видеть более удалённые предметы.

Очки. Они предназначены для исправления таких дефектов зрения, как дальнозоркость и близорукость . Близорукий глаз хорошо видит только близкие предметы. Их чёткие изображения получаются на сетчатке глаза (чертёж «а»). Если же предмет далеко, то его чёткое изображение получается перед сетчаткой (чертёж «б»).

Для исправления близорукости поместим перед глазом рассеивающую линзу (чертёж «в»). Она сделает пучок лучей от предмета более расходящимся. В результате он станет похожим на тот пучок, который попадал в глаз в случае «а». Следовательно, изображения окажутся на сетчатке, и близорукий человек отчетливо увидит далёкие предметы. Для дальнозорких людей нужны очки с собирающими линзами.

Дисперсия света. Образование цвета.

Опыт можно повторять, используя лучи других цветов, однако вывод будет прежним: показатель преломления вещества зависит от цвета света. Это влияние называют дисперсией света. В физике также встречается трактовка дисперсии как явления «разложения» света (рис. «в»).

Направив на призму белый свет, мы увидим два новых явления: во-первых, тонкий пучок превратится в расширяющийся и, во-вторых, белый свет превратится в многоцветный. Поместив на его пути белый экран, мы увидим радужную полоску – сплошной спектр (см. рисунок).

Откуда же появились разноцветные лучи? Рассмотрим рисунок «в» внимательнее. Красно-оранжевая часть спектра расположена там, куда шёл красный луч в опыте «а». При этом сине-фиолетовая часть спектра расположена там, куда шёл фиолетовый луч в опыте «б». Следовательно, белый свет разделяется призмой на цветные лучи. Таким образом, белый свет – сложный свет, образованный из света всех цветов спектра.

Цвета тел. На средней фотографии ракетки и теннисный шарик освещены белым светом. Посмотрим на них сквозь зелёное стекло: белый шарик стал зелёным, малиновая ракетка чёрной, а зелёная сохранила свой цвет (фото слева). Если же мы используем красное стекло, то белый шарик станет красным, зелёная ракетка чёрной, а малиновая красной (фото справа).

Правая ракетка видится нам зелёной, так как из всего спектра падающего на неё белого света она отражает лишь жёлто-зелёно-голубые лучи, дающие в смеси зелёный цвет. Лучи остальных цветов ракетка не отражает, а поглощает. Аналогично, если левая ракетка видится нам красной, значит, из всего спектра падающего на неё белого света она отражает только жёлто-красно-оранжевые лучи. Лучи других цветов ракетка поглощает.

Теперь объясним, почему ракетки поочерёдно выглядят чёрными: малиновая при рассматривании через зелёное стекло и зелёная – при рассматривании через красное. Оно потому и красное, что поглощает лучи всех цветов, пропуская лишь красно-оранжевые. А поскольку от зелёной ракетки таких лучей не исходит, она выглядит чёрной – от этой ракетки в наши глаза свет не поступает вообще, что наш мозг считает чёрным цветом. Аналогично, зелёное стекло поглощает лучи всех цветов, кроме сине-зелёно-жёлтых. Поэтому, наблюдая красную ракетку сквозь него, мы не видим испускаемого ею света – она выглядит чёрной.

Примером дисперсии света является образование радуги. Разложение белого цвета происходит при прохождении через капельки дождя.


БИЛЕТ №1

1 . Почему в плавких предохранителях применяют именно свинцовую проволоку?Если сила тока превысит до­пустимое значение, проволока в пробке расплавится, и электрическая цепь разомкнётся .

2. Где в квартире устанавливают предохранители? В распределительном щите перед квартирой.

3.Имеют ли автономные электрические устройства, например телевизоры, предохранители? Да .

Существуют ли другие конструкции предохранителей? Существуют. По своей конструкции предохранители могут быть резьбового типа (пробочные) или трубчатые.

Для нормальных предохранителей, кроме пробок с плавкими вставками выпускаются пробочные автоматы, которые ввертываются в то же основание вместо пробок. При перегрузке и коротких замыканиях в линии автомат отключает линию своими контактами. Цепь восстанавливается нажатием на кнопку. Другая кнопка служит, для отключения цепи (вместо выключателя).

БИЛЕТ 2

1. Какую гипотезу пытался проверить Ампер своими опытами? Что надо пони- мать под словами «электрический конфликт»? Если проводник тока всегда окружен магнитными силами, то «электрический конфликт» должен выступать не только между проводом и магнитной стрелкой, но и между двумя проводами, по которым течет ток. «электрический конфликт»-взаимодействие

2. Играет ли роль в проверке взаимодействия между проводниками с током расстояние между ними? Да, т.к. сила убывает с ростом расстояния.

3. Как ведут себя два соленоида с током, установленные рядом?что соленоиды, установленные рядом, при пропускании через них тока ведут себя, подобно двум магнитам.

Билет №3

1. Как зависит температура плавления льда от внешнего давления?Однако расчеты показывают, что человек массой 60 кг, стоя на коньках, оказывает на лед давление примерно в 15 атм. Это означает, что под коньками температура плавления льда уменьшается только на 0,11 °С. Такого повышения температуры явно недостаточно для того, чтобы лед стал плавиться под давлением коньков при катании, например, при –10 °С



2. Приведите два примера, которые иллюстрируют возникновение избыточного давления при замерзании воды. Лед разрывает стеклянную бутылку в морозилке.

3. При протекании какого процесса может выделяться теплота, которая идет на плавление льда при катании на коньках?Трение.

БИЛЕТ № 4

1. Зачем в описанном опыте применяли батарею конденсаторов?По мере заряжения конденсаторов увеличивается разность потенциалов между электродами, а следовательно, будет увеличиваться напряженность поля в газе

2.К какому виду разрядов можно отнести молнию? Искровой разряд.

3.Когда между облаками проскакивает молния?При достаточной напряженности поля

4.Может ли возникнуть молния между облаками и Землей? Объясните.Грозовые облака несут в себе большие электрические заряды

Билет №5

1. Знали ли вы, что в нашей стране накопилось много радиоактивного «мусора» и что он теперь - реальная и грозная опасность для нашей жизни и здоровья? Откуда берется этот «мусор»?Ядерная энергетика, широко используемая в последние десятилетия, оставляет много радиоактивных отходов.

2. Какие могут быть экологические последствия, если эту проблему не решить?Эти отходы накапливаются и представляют чрезвычайную радиационную опасность для обширных районов России и сопредельных стран.

3. Как вы думаете: какой метод захоронения отходов дороже - метод стеклования взрывом или традиционный, требующий сооружения бетонных могильников? Почему? (Ответ. Традиционный метод дороже: для его осуществления требуется возвести помимо могильников комплекс обслуживающих предприятий и поддерживать постоянные параметры захоронений - давление, температуру, влажность.)

4. Можно ли, с вашей точки зрения, «совместить» предлагаемый проект захоронения отходов с помощью подземных ядерных взрывов и Договор о всеобщем запрещении ядерных испытаний, который подписан Россией и за бессрочное продление которого выступает наша страна? Можно, т.к. захоронение это не испытания.

Билет №6.

1 Почему опыт не удается, если воздух в цилиндре сжимать медленно?Так как топливо не сможет самовозгорется.

2 Почему для проведения опыта берется именно эфир? двигатель Дизеля

3. Какой из двигателей: карбюраторный двигатель внутреннего сгора­ния или двигатель Дизеля более экологичный?Двигатели Дизеля имеют больший коэффициент полезного действия, чем обычные, но более сложны в изготовлении и эксплуатации .

4. Почему у двигателей Дизеля больше КПД, чем у карбюраторных двигателей? Больше топлива идет на совершение работы.

Билет 7

1. В чем заключается явление электромагнитной индукции? Возникновение индукционного тока при изменении магнитного потока или вихревого поля.

2. Может ли трансформатор работать от постоянного тока? Трансформатор преобразует переменный электрический ток

3. Каковы потери передаваемой мощности в трансформаторах? В среднем 15-20%.

4. Почему сердечник трансформатора набирается из пластин? Чтобы избежать нагревания от токов Фуко.

БИЛЕТ № 8

1.Какое физическое явление лежит в основе появления огней святого Эльма? Коронный разряд .

2.Почему не возникает такого свечения на плоской металлической крыше? Нет острия .

3.Опасно ли находиться вблизи возникших огней святого Эльма на ко­рабле? Да, если высокая напряженность поля .

4. Как можно получить огни святого Эльма? Ножницы и лист оргстекла.

Билет №9

1. Одинакова ли скорость движения маятника?

2. Постоянно ли ускорение при движении маятника? Нет, меняется по синусоидальному закону

3. Отчего зависит период колебаний?От длины нити.

4.В чем заключается свойство изохронности? Свойство независимости периода колебаний маятника от амплитуды на­зывается изохронностью.

Билет №10

1. Что представляет собой явление гидравлического удара? Каковы условия его возникновения?Явление гидравлического удара, заключающегося в резком увеличении давления при внезапном падении скорости потока жидкости, нашло свое воплощение в устройствах, называемыми гидравлическими таранами.

2. Назовите причину возникновения повышения давления в нижнем конце трубопровода гидравлического тарана?. Под действием нарастающего динамического напора воды закрывается отбойный клапан, расположенный на нижнем конце трубопровода, и вследствие инерции движущейся воды и её не сжимаемости давление здесь резко повышается.

3. Чем обусловлена необходимость установления в трубах теплосетей специальных устройств - стабилизаторов давления?

Для предотвращения разрыва.

4.Где можно применять гидротаран?использует только потенциал небольшой плотины или даже просто естественного рельефа реки.

Билет №11.

1. Что означает слово синтез?Заставить сблизиться ядра можно с помощью нагрева до высоких температур, когда в результате обычных столкновений ядра смогут сблизиться на столь малые расстояния, чтобы ядерные силы вступили в реакцию, и произошел синтез

2.Всегда ли при ядерной реакции выделяется энергия? Да

3. Каковы проблемы управления термоядерным синтезом?Проблема использования синтеза ядер в мирных целях, например для производства электриче­ской энергии, упирается в очень трудную проблему удержания реак­ции.

Билет №12

1. Для чего, для каких целей используют металлодетекторы?Её, например, уменьшают, если необходимо произвести досмотр только с целью обнаружения крупных металлических предметов. А небольшие предметы - ключи, оправы очков, ручки - сигнализацию детектора не вызовут.

2. Как вы понимаете характеристику «рабочая частота» прибора?(частота изменения направления тока в секунду) Велика ли она?(низкая)

3. Какой закон физики лежит в основе действия описанного металлодетектора? Какими другими словами мы называем «наведенный ток»?(индукционный) Закон электромагнитной индукции

4. Каким образом с помощью металлодетектора можно обнаружить взрывное устройство в пластиковой оболочке?В любом металлическом (и даже электропроводящем) объекте, оказавшемся поблизости, под действием такого изменяющегося магнитного поля возникнут электрические токи.

БИЛЕТ № 13

1.Какой уровень шума безвреден для человека 0 20-30 дБ

2. Какой допустимый уровень шума для человека? Допустимая граница поднимаемся примерно до 80 дБ

3.Как называется наука, изучающая воздействие звука и шума на человека? аудиология

4.Как влияют сверхдопустимые уровни шумов на человека?психологическое воздействие, усталости, стойкой бессоннице и атеросклерозу

Билет №14

1.Какие еще тепловые двигатели, кроме двигателей внутреннего сгора­ния, оказывают отрицательное влияние на окружающую среду? газовый, реактивный, паровой

2.К каким последствиям приводят широкое применение тепловых ма­шин в энергетике и транспорте? к загрязнению окружающей среды

3.К чему может привести повышение температуры Земли? Дальнейшее увеличение концентрации углекислого газа в атмосфере может привести к так называемому «парниковому эффекту».

4.Что предпринимается для охраны природы? использование дизелей, применение электродвигателей на транспорте или двигателей, в которых топливом является водород, создание автомобилей, работающих на сол­нечной энергии .

Билет №15

1. В чем отличие ультразвука от звуковых волн, воспринимаемых человеком? Ультразвуковые волны люди не слышат, а звуковые волны слышим

2. Что называют кавитанционным пузырьком? Какой эффект получается при «схлопывании» кавитанционных пузырьков? кавитацией - образованием в растворе огромного количества микроскопических пузырьков, заполненных газом, паром и их смесью, эти пузырьки возникают при прохождении акустической волны во время полупериода разрежения . Под действием перепада давления при появлении и «схлопывании» пузырьков нарушается сцепление загрязненных микрочастиц с волокнами изделий и облегчается их удаление поверхностно-активными веществами моющего раствора стирального порошка или мыла.

3. Почему излучатель ультразвуковых колебаний имеет чаще всего форму шара или диска? Потому что там большая площадь поверхности излучения.

4. Попробуйте объяснить, зачем на блоках питания установлены светодиодные индикаторы. Ответ: Для определения рабочего состояния устройства.

Билет №16

1.Каким образом некоторые насекомые, например stenus, удерживаются на воде и даже используют силы поверхностного натяжения для того, чтобы двигаться? В результате поверхность служит как бы пленкой, стягивающей всю массу жидкост

2. Почему пузырь имеет всегда шарообразную форму? Наружный слой воды давит на воздух и сжимает его

3.Зависят ли силы поверхностного натяжения от температуры? Зависят, потому, что увеличивается скорость движения молекул на поверхности воды .

4. Как можно измерить силу поверхностного натяжения? С помощью специального динамометра ДПН. К пружине прикреплена пластина, которая опускается на поверхность жидкости. При поднятии пластины пружина растягивается и на шкале динамометра регистрируется сила, удерживающая пластину. Это и будет сила поверхностного натяжения.

Билет №17

1. Назовите отличительную особенность теплопроводности как вида теплопередачи. Почему воздух является плохим проводником тепла? Ответ: Существует два вида теплопередачи: теплопроводность и конвекция. Теплопроводность зависит от вида вещества. Воздух-это газ, расстояние между молекулами большое, соударения редкие, передача энергии минимальная. Это свойство воздуха используется в стеклопакетах.

2. В сильный мороз птицы чаще замерзают на лету, чем сидя на месте. Чем это можно объяснить? Почему в холодную погоду многие животные спят, свернувшись клубком? Ответ.1. Во время полета крылья птицы расправлены и тело не защищено от мороза. Когда птица сидит на месте, крылья мешают теплопередаче. 2. Животные спят, свернувшись клубком, чтобы уменьшить площадь поверхности тела, участвующую в теплопередаче.

3. У человека замерзают быстрее всего конечности, уши и нос, так как эти части тела имеют тонкие стенки. А еще почему? В эти части тела меньше поступает крови, нет мышц.

4. Когда человеку холодно, он начинает дрожать. Какую роль играют эти защитные механизмы для увеличения внутренней энергии человека?

Ответ: при дрожании мышцы сокращаются и вырабатывают энергию.

Билет №18

1. С какой целью проводился эксперимент, описанный в тексте?Для объяснения принципа действия пузырьковой камеры.

2. Почему в пробирке с водопроводной водой пузырьки образуются в основном на кусочке мела? Что является «кипелкой» для процесса кипения воды в обычном чайнике? Мел-неоднородность. Неровности, накипь.

3. Объясните, как вы понимаете смысл понятия «перегретая жидкость». В идеально чистом сосуде с однородной жидкостью кипение не наступает вплоть до температуры 140°С..

4. Почему важнейшим условием работы камеры Глейзера является однородность жидкости и чистота ампулы? Чтобы жидкость была перегретой.

Билет №19

1. Почему для осаждения облака необходимо получение крупных капель и кристаллов? Для этого над облаком разбрасывают кристаллы «сухого льда» (СО2), которые, охлаждая облако, вызывают усиленную конденсацию с образованием крупных капель и кристаллов льда.

2. Почему в качестве «затравки» для образования крупных капель воды и кристаллов используют йодид серебра? . Для этого в облаках распыляют микрочастицы, которые служат так называемыми ядрами кристаллизации для образования крупных капель и кристаллов.

3. Каким образом кристаллы «сухого льда» усиливают конденсацию? В чём суть этого явления? Можно разбрасывать в облаках микроскопические крупинки гигроскопических солей (NaCl или КС1), которые, попав в облако, будут притягивать к себе влагу и разбухать, становясь зародышами больших капель.

4. Объясните необходимость разумного влияния человека на атмосферные процессы. В честь какова нибудь праздика разогнать облака, что бы была хорошая погода .

БИЛЕТ № 20

1. Какова причина броуновского движения? Беспорядочные удары молекул о частицу, попавшую в газ или жидкость.

2. Как влияет температура вещества на броуновское движение? С увеличением температуры скорость движения частиц увеличивается.

3. Наблюдается ли броуновское движение в твердых телах? Да, дрожание стрелок чувствительных приборов.

4. Кто окончательно построил теорию броуновского движения и экспе­риментально ее подтвердил? Молекулярно-кинетическая теория броуновского движения была создана А. Эйнштейном в 1905 г.

БИЛЕТ №21

1. Как определяется химический состав звезд? спектральный анализ их излучения

2. Как определяется качественный состав звезд? спектральный анализ их излучения

БИЛЕТ № 22

3. Текст по разделу «Механика», содержащий описание физиче­ских явлений или процессов, наблюдаемых в природе или в повсе­дневной жизни. Задание на понимание физических терминов, опре­деление явления, его признаков или объяснение явления при по­мощи имеющихся знаний

Звуки

Задумайтесь о происхождении звуков - вот стукнула дверь, ударили кулаком по столу, проехала машина, стучат каблучки по полу. Звук всегда вызывается каким-либо механическим движением. Доски,стол, стены, большинство других предметов от толчков не приходят в видимое движе­ние, если только они не очень сильны. Но они способны несколько проги­баться, и в результате возникает их легкое движение вперед-назад (вибра­ция). Хорошо иллюстрирует природу колебаний туго натянутая струна или резиновый шнур. Предположим, что мы оттянули середину струны гитары из нормального положения. Струна натягивается, и когда мы ее отпустим, она вернется назад, но в момент возвращения в свое нормальное положение она будет двигаться. Продолжая движение, постепенно замедляясь, она остановится, но уже по другую сторону от своего первоначального положе­ния. Теперь струна снова натянута и должна двигаться назад. Со временем, после многих таких колебаний струна вернется в состояние покоя.

Подобным способом происходят колебания твердых упругих предме­тов, если какой-то участок тела толкнуть и вывести из нормального состоя­ния. Колебания одной части предмета оказывают влияние на остальные части. Колеблющиеся участки тянут и толкают соседние, а те тоже начина­ют колебаться. В свою очередь, они приводят в движение окружающие их участки и т.д. Таким образом, колебания, созданные в одной точке тела, передаются другим его точкам по всем направлениям, так что через какое-то время колеблются все точки внутри сферы с центром в источнике коле­баний. Так распространяется звуковая волна в твердом материале.

Ответьте на вопросы к тексту и выполните задание:

1.Одинакова ли скорость распространения звука в различных твердых материалах? Скорость распространения звука зависит от вида твердого материала

2.Только ли в твердых материалах распространяется звук? В любых средах можем услышать звук (кроме вакуума)

3. Можно ли на Земле услышать гул двигателя космического корабля, пролетающего в открытом космосе? Нет, не можем

4. Получите звуковые колебания на одном из физических приборов.Можно получить звук с помощью камертона

БИЛЕТ № 23

1. Что вы чувствуете, когда протираете кожу своей руки спиртом? Чувствуется охлаждение

2.При одной и той же температуре, когда нам кажется теплее - в сы­рую погоду или в сухую? В сухую .

3. Когда быстрее растает кусочек льда - закутанный в теплый шарф или положенный на тарелку? На тарелке

4.Каков принцип работы холодильника?

Работа холодильника основана на использовании теплового насоса , переносящего тепло из рабочей камеры холодильника наружу, где оно рассеивается во внешнюю среду .

БИЛЕТ № 24

1.Для чего понижается давление в газоразрядных трубках?Если из трубок, которым можно придать разную форму, откачать воз­дух до давления порядка десятых и сотых долей миллиметров ртутного столба и на впаянные в трубку электроды подать напряжение порядка нескольких сотен вольт, то в трубке возникает свечение

2.От чего зависит цвет свечения?Если трубка наполнена неоном, возникает красное свечение, аргоном - синевато-зеленое свечение. В лампах дневного света используют раз­ряд в парах ртути

3.Почему при возникшем тлеющем разряде не вся трубка заполнена положительным столбом?При тлеющем разряде почти вся трубка, за исключением небольшого участка возле катода, заполнена однородным свечением, называемым положительным столбом

4.Где применяют трубки с тлеющим разрядом? квантовых генераторах - га­зовых лазерах.

БИЛЕТ № 25

1. Что объединяло все эти опыты?Во всех опытах стало отсутствовать давление верхних слоев воды на нижние

2. Почему при свободном падении отсутствовало давление внутри па­дающей системы? (Потому что когда тело падает отсутствует вес, поэтому отсутствует давление)

3. Как называется состояние свободного падения? (Невесомость)

4. Где встречается состояние невесомости? (В лифте во время прыжка))

БИЛЕТ № 26

3. Текст по теме «Электромагнитные поля», содержащий ин­формацию об электромагнитном загрязнении окружающей среды. Задание на определение степени воздействия электромагнитных полей на человека и обеспечение экологической безопасности

Невидимое загрязнение

В последние годы повышенное внимание уделяется вопросам влияния электромагнитных полей на состояние здоровья населения и объекты при­родной среды. Основным источником электромагнитных полей на Земле является Солнце. Суммарная плотность потока электромагнитной энергии у поверхности Земли составляет 10 -10 - 10 -9 Вт/м 2 в период мощных сол­нечных вспышек. Использование электромагнитной энергии в различных областях человеческой деятельности привело к тому, что к существующим природному электрическому и магнитному полям добавились электромаг­нитные поля искусственного происхождения, уровень которых в несколько десятков раз превышает уровень естественного электромагнитного поля.

В последнее время отмечено резкое увеличение количества и видов но­вой техники, оборудования и устройств, эксплуатация которых сопровож­дается излучением электромагнитной энергии в окружающую среду. Это оборудование развивающегося радио- и телевизионного вешания, систем подвижной и персональной радиосвязи, энергетическое оборудование, со­временная бытовая техника, линии электропередачи.

Являясь биологически активным фактором, электромагнитное поле ис­кусственного происхождения оказывает неблагоприятное воздействие на человека и окружающую природную среду, что и было отмечено в 1989 г. Всемирной организацией здравоохранения, включившей этот фактор в чис­ло значимых экологических проблем.

Помните, что электромагнитные поля различаются по длине волны и частоте колебаний. Чем короче длина волны, тем больше частота колеба­ний и наоборот. Их подразделяют на высокочастотные, ультравысокочас­тотные и сверхвысокой частоты. Биологическая активность электромагнит­ных излучений возрастает с уменьшением длины волны, что приводит к большей «агрессивности» действия полей радиочастот по сравнению с по­лями промышленной частоты.

По предварительным оценкам, в России электромагнитному облучению гигиенически значимых уровней подвергаются приблизительно 70 % обшей численности населения, облучаемого вне производственной сферы (прожи­вающие вблизи воздушных линий электропередачи, в домах с электропли­тами и т.д.).

Самые опасные -, волны миллиметровые, санти­метровые и дециметровые. По санитарным нормам в диапазоне СВЧ при круглосуточном

Между интенсивностью электромагнитных полей, продолжительностью их воздействия и состоянием здоровья населения имеется однозначная связь. Она выражается в снижении иммунологической реактивности орга­низма, увеличении общей заболеваемости, распространенности болезней органов дыхания, нервной системы, болезней кожи, разрушения сетчатки глаз, увеличения онкологических заболеваний.

Применение американскими полицейскими радиотелефонов, работаю­щих в СВЧ диапазоне, привело к значительному увеличению числа заболе­ваний раком мозга.

Размещение садовых и дачных участков вблизи ЛЭП и радарных уста­новок приводит к тому, что электромагнитные поля воздействуют на чело­века не только снаружи, но и внутри здания.

Дети в возрасте до 15 лет в 2.7 раза чаще страдают злокачественными заболеваниями, подвергаясь действию электромагнитного поля с индукцией свыше 0,2 мкТл.

Регулярная работа с компьютером без применения защитных средств приводит к заболеванию органов зрения, к болезням сердечно-сосудистой системы и желудочно-кишечного тракта.

Не до конца изучено воздействие ЭМП на сельскохозяйственные объекты.

Недооценка электромагнитных полей как загрязнителя окружающей природной среды привела к ухудшению экологической ситуации в стране. Необходимо научно обосновать нормативные оценки степени загрязнения окружающей среды электромагнитными полями.

Чтобы в дальнейшем обеспечить экологическую безопасность и защи­тить население и природную среду от повреждающего действия ЭМП, не­обходимо детальное нормирование уровня электромагнитных полей раз­личных диапазонов в жилых помещениях, общественных зданиях и на при­легающих к источникам ЭМП территориях.

Ответьте на вопросы к тексту.

1.Какие из бытовых приборов создают наиболее опасные электромаг­нитные поля? поля СВЧ диапазона

2.Почему магнитные поля создаются лишь работающими приборами и установками? (т.к. при выключенном приборе нет тока, который порождает магнитное поле. Зная основные свойства магнитного поля, устанавливаемые экспериментально:

2024 english-speak.ru. Изучение английского языка.