Как найти стороны прямоугольного треугольника? Основы геометрии. Решение прямоугольного треугольника Формула нахождения катета треугольника

После изучения темы про прямоугольные треугольники ученики часто выбрасывают из головы всю информацию о них. В том числе и то, как найти гипотенузу, не говоря уже о том, что это такое.

И напрасно. Потому что в дальнейшем диагональ прямоугольника оказывается этой самой гипотенузой, и ее нужно найти. Или диаметр окружности совпадает с самой большой стороной треугольника, один из углов которого прямой. И найти ее без этого знания невозможно.

Существует несколько вариантов того, как найти гипотенузу треугольника. Выбор метода зависит от исходного набора данных в условии задачи величин.

Способ под номером 1: даны оба катета

Это самый запоминающийся метод, потому что использует теорему Пифагора. Только иногда ученики забывают, что по этой формуле находится квадрат гипотенузы. Значит, чтобы найти саму сторону, нужно будет извлечь квадратный корень. Поэтому формула для гипотенузы, которую принято обозначать буквой «с», будет выглядеть так:

с = √ (а 2 + в 2) , где буквами «а» и «в» записаны оба катета прямоугольного треугольника.

Способ под номером 2: известен катет и угол, который к нему прилежит

Для того чтобы узнать, как найти гипотенузу, потребуется вспомнить тригонометрические функции. А именно косинус. Для удобства будем считать, что даны катет «а» и прилежащий к нему угол α.

Теперь нужно вспомнить, что косинус угла прямоугольного треугольника равен отношению двух сторон. В числителе будет стоять значение катета, а в знаменателе — гипотенузы. Из этого следует, что последнюю можно будет сосчитать по формуле:

с = а / cos α .

Способ под номером 3: даны катет и угол, который лежит напротив него

Чтобы не запутаться в формулах, введем обозначение для этого угла — β, а сторону оставим прежнюю «а». В этом случае потребуется другая тригонометрическая функция - синус.

Как и в предыдущем примере, синус равен отношению катета к гипотенузе. Формула этого способа выглядит так:

с = а / sin β .

Для того чтобы не запутаться в тригонометрических функциях, можно запомнить простое мнемоническое привило: если в задаче идет речь о про тиволежащем угле, то нужно использовать си нус, если — о при лежащем, то ко синус. Следует обратить внимание на первые гласные в ключевых словах. Они образуют пары о-и или и-о .

Способ под номером 4: по радиусу описанной окружности

Теперь, для того чтобы узнать, как найти гипотенузу, потребуется вспомнить свойство окружности, которая описана около прямоугольного треугольника. Оно гласит следующее. Центр окружности совпадает с серединой гипотенузы. Если сказать по-другому, то самая большая сторона прямоугольного треугольника равна диагонали окружности. То есть удвоенному радиусу. Формула для этой задачи будет выглядеть так:

с = 2 * r , где буквой r обозначен известный радиус.

Это все возможные способы того, как находить гипотенузу прямоугольного треугольника. Пользоваться в каждой конкретной задаче нужно тем методом, который больше подходит по набору данных.

Пример задачи №1

Условие: в прямоугольном треугольнике проведены медианы к обоим катетам. Длина той, которая проведена к большей стороне, равна √52. Другая медиана имеет длину √73. Требуется вычислить гипотенузу.

Так как в треугольнике проведены медианы, то они делят катеты на два равных отрезка. Для удобства рассуждений и поиска того, как найти гипотенузу, нужно ввести несколько обозначений. Пусть обе половинки большего катета будут обозначены буквой «х», а другого — «у».

Теперь нужно рассмотреть два прямоугольных треугольника, гипотенузами у которых являются известные медианы. Для них нужно дважды записать формулу теоремы Пифагора :

(2у) 2 + х 2 = (√52) 2

(у) 2 + (2х) 2 = (√73) 2 .

Эти два уравнения образуют систему с двумя неизвестными. Решив их, легко можно будет найти катеты исходного треугольника и по ним его гипотенузу.

Сначала нужно все возвести во вторую степень. Получается:

4у 2 + х 2 = 52

у 2 + 4х 2 = 73.

Из второго уравнения видно, что у 2 = 73 - 4х 2 . Это выражение нужно подставить в первое и вычислить «х»:

4(73 - 4х 2) + х 2 = 52.

После преобразования:

292 - 16 х 2 + х 2 = 52 или 15х 2 = 240.

Из последнего выражения х = √16 = 4.

Теперь можно вычислить «у»:

у 2 = 73 - 4(4) 2 = 73 - 64 = 9.

По данным условия получается, что катеты исходного треугольника равны 6 и 8. Значит, можно воспользоваться формулой из первого способа и найти гипотенузу:

√(6 2 + 8 2) = √(36 + 64) = √100 = 10.

Ответ : гипотенуза равна 10.

Пример задачи №2

Условие: вычислить диагональ, проведенную в прямоугольнике с меньшей стороной, равной 41. Если известно, что она делит угол на такие, которые соотносятся как 2 к 1.

В этой задаче диагональ прямоугольника является наибольшей стороной в треугольнике с углом 90º. Поэтому все сводится к тому, как найти гипотенузу.

В задаче идет речь об углах. Это значит, что нужно будет пользоваться одной из формул, в которых присутствуют тригонометрические функции. А сначала требуется определить величину одного из острых углов.

Пусть меньший из углов, о которых идет речь в условии, будет обозначен α. Тогда прямой угол, который делится диагональю, будет равен 3α. Математическая запись этого выглядит так:

Из этого уравнения просто определить α. Он будет равен 30º. Причем он будет лежать напротив меньшей стороны прямоугольника. Поэтому потребуется формула, описанная в способе №3.

Гипотенуза равна отношению катета к синусу противолежащего угла, то есть:

41 / sin 30º = 41 / (0,5) = 82.

Ответ: гипотенуза равна 82.

Прямоугольный треугольник содержит в себе огромное множество зависимостей. Это делает его привлекательным объектом для разного рода геометрических задач. Одной из наиболее часто встречающихся задач считается нахождение гипотенузы.

Прямоугольный треугольник

Прямоугольный треугольник – это треугольник, который содержит в себе прямой угол, т.е. угол в 90 градусов. Только в прямоугольном треугольнике можно выразить тригонометрические функции через величины сторон. В произвольном треугольнике придется производить дополнительные построения.
В прямоугольном треугольнике две из трех высот совпадают со сторонами зовутся катетами. Третья сторона зовется гипотенузой. Высота, проведенная к гипотенузе единственная в этом виде треугольника, требующая дополнительных построений.

Рис. 1. Виды треугольников.

В прямоугольном треугольнике не может быть тупых углов. Так же, как невозможно и существование второго прямого угла. В этом случае нарушается тождество суммы углов треугольника, которая всегда равна 180 градусам.

Гипотенуза

Перейдем непосредственно к гипотенузе треугольника. Гипотенуза – это наибольшая сторона треугольника. Гипотенуза всегда больше любого из катетов, но при этом всегда меньше суммы катетов. Это следствие из теоремы неравенства треугольника.

Теорема гласит: в треугольнике ни одна из сторон не может больше суммы двух других. Существует и вторая формулировка или вторая часть теоремы: в треугольнике напротив большей стороны лежит больший угол и наоборот.

Рис. 2. Прямоугольный треугольник.

В прямоугольном треугольнике большим углом является прямой угол, так как второго прямого угла или тупого угла быть не может по уже названным причинам. Значит напротив прямого угла всегда лежит большая сторона.

Кажется непонятным, почему именно прямоугольный треугольник заслужил отдельное наименование каждой из сторон. На самом деле, в равнобедренном треугольнике стороны так же носят свои названия: боковые стороны и основание. Но именно за катеты и гипотенузы учителя особенно любят ставить двойки. Почему? С одной стороны это дань памяти древним грекам, изобретателям математики. Именно они изучали прямоугольные треугольники и наряду с этими знаниями оставили целый пласт информации, на котором строится современная наука. С другой же стороны существование этих названий значительно упрощает формулировки теорем и тригонометрических тождеств.

Теорема Пифагора

Если учитель спрашивает о формуле гипотенузы прямоугольного треугольника, значит, с вероятностью 90 %, он имеет в виду теорему Пифагора. Теорема гласит: в прямоугольном треугольнике квадрат гипотенузы равен суммы квадратов катетов.

Рис. 3. Гипотенуза прямоугольного треугольника.

Обратите внимание, как четко и емко формулируется теорема. Подобной простоты невозможно достигнуть без использования понятий гипотенузы и катета.

Теорема имеет следующую формулу:

$c^2=b^2+a^2$ – где с - гипотенуза, a и b - катеты прямоугольного треугольника.

Что мы узнали?

Мы поговорили о том, что такое прямоугольный треугольник. Узнали, зачем вообще придумали названия катетов и гипотенузы. Выяснили некоторые свойства гипотенузы и привели формулу длины гипотенузы треугольника через теорему Пифагора.

Тест по теме

Оценка статьи

Средняя оценка: 4.6 . Всего получено оценок: 213.

Первые - это отрезки, которые прилегают к прямому углу, а гипотенуза является самой длинной частью фигуры и находится напротив угла в 90 о. Пифагоровым треугольником называется тот, стороны которого равны натуральным числам; их длины в таком случае имеют название «пифагорова тройка».

Египетский треугольник

Для того чтобы нынешнее поколение узнало геометрию в том виде, в котором ее преподают в школе сейчас, она развивалась несколько веков. Основополагающим моментом считается теорема Пифагора. Стороны прямоугольного известна на весь мир) составляют 3, 4, 5.

Мало кто не знаком с фразой «Пифагоровы штаны во все стороны равны». Однако на самом деле теорема звучит так: c 2 (квадрат гипотенузы) = a 2 +b 2 (сумма квадратов катетов).

Среди математиков треугольник со сторонами 3, 4, 5 (см, м и т. д.) называется "египетским". Интересно то, что которая вписана в фигуру, равняется единице. Название возникло примерно в V столетии до н.э., когда философы Греции ездили в Египет.

При построении пирамид архитекторы и землемеры пользовались соотношением 3:4:5. Такие сооружения получались пропорциональными, приятными на вид и просторными, а также редко рушились.

Для того чтобы построить прямой угол, строители использовали веревку, на которой было завязано 12 узлов. В таком случае вероятность построения именно прямоугольного треугольника повышалась до 95%.

Признаки равенства фигур

  • Острый угол в прямоугольном треугольнике и большая сторона, которые равны тем же элементам во втором треугольнике, - бесспорный признак равенства фигур. Беря во внимание сумму углов, легко доказать, что вторые острые углы также равны. Таким образом, треугольники одинаковы по второму признаку.
  • При наложении двух фигур друг на друга повернем их таким образом, чтобы они, совместившись, стали одним равнобедренным треугольником. По его свойству стороны, а точнее, гипотенузы, равны, так же как и углы при основании, а значит, эти фигуры одинаковые.

По первому признаку очень просто доказать то, что треугольники действительно равны, главное, чтобы две меньшие стороны (т. е. катеты) были равными между собой.

Треугольники будут одинаковыми по II признаку, суть которого заключается в равенстве катета и острого угла.

Свойства треугольника с прямым углом

Высота, которую опустили из прямого угла, разбивает фигуру на две равные части.

Стороны прямоугольного треугольника и его медианы легко узнать по правилу: медиана, которая опущена на гипотенузу, равна ее половине. можно найти как по формуле Герона, так и по утверждению, что она равна половине произведению катетов.

В прямоугольном треугольнике действуют свойства углов в 30 о, 45 о и 60 о.

  • При угле, который равен 30 о, следует помнить, что противолежащий катет будет равен 1/2 самой большой стороны.
  • Если угол 45 о, значит, второй острый угол также 45 о. Это говорит о том, что треугольник равнобедренный, и его катеты одинаковы.
  • Свойство угла в 60 о заключается в том, что третий угол имеет градусную меру в 30 о.

Площадь легко узнать по одной из трех формул:

  1. через высоту и сторону, на которую она опускается;
  2. по формуле Герона;
  3. по сторонам и углу между ними.

Стороны прямоугольного треугольника, а точнее катеты, сходятся с двумя высотами. Для того чтобы найти третью, необходимо рассматривать образовавшийся треугольник, и тогда по теореме Пифагора вычислить необходимую длину. Помимо этой формулы существует также соотношение удвоенной площади и длины гипотенузы. Наиболее распространенным выражением среди учеников является первое, так как требует меньше расчетов.

Теоремы, применяемые к прямоугольному треугольнику

Геометрия прямоугольного треугольника включает в себя использование таких теорем, как:


Среди многочисленных расчетов, производимых для вычисления тех или иных величин различных есть нахождение гипотенузы треугольника. Напомним, что треугольником называется многогранник, имеющий три угла. Ниже будут приведены несколько способов расчета гипотенузы различных треугольников.

Первоначально посмотрим, как найти гипотенузу прямоугольного треугольника. Для тех, кто подзабыл, прямоугольным называется треугольник, имеющий угол 90 градусов. Сторона треугольника, расположенная на противоположной стороне прямого угла, называется гипотенузой. К тому же, она является наиболее длинной стороной треугольника. В зависимости от известных величин длина гипотенузы рассчитывается следующим образом:

  • Известны длины катетов. Гипотенуза в этом случае исчисляется, используя теорему Пифагора, которая звучит следующим образом: квадрат гипотенузы равен сумме квадратов катетов. Если рассмотреть прямоугольный треугольник BKF, где BK и KF катеты, а FB - гипотенуза, то FB2= BK2+ KF2. Из вышесказанного следует, что при расчете длины гипотенузы нужно возвести поочередно в квадрат каждую из величин катетов. Затем сложить поученные цифры и из результата извлечь квадратный корень.

Рассмотрим пример: Дан треугольник с прямым углом. Один катет равен 3 см, другой 4см. Найти гипотенузу. Решение выглядит следующим образом.

FB2= BK2+ KF2= (3см)2+(4см)2= 9см2+16см2=25 см2. Извлекаем и получаем FB=5см.

  • Известен катет (BK) и угол, прилежащий к нему, который образуется гипотенузой и этим катетом. Как найти гипотенузу треугольника? Обозначим известный угол α. Согласно свойству которое гласит, что отношение длины катета к длине гипотенузы равняется косинусу угла между этим катетом и гипотенузой. Рассматривая треугольник это можно записать так: FB= BK*cos(α).
  • Известен катет (KF) и тот же угол α, только теперь он уже будет противолежащим. Как найти гипотенузу в этом случае? Обратимся все к тем же свойствам прямоугольного треугольника и узнаем, что отношение длины катета к длине гипотенузы равняется синусу противолежащего катету угла. То есть FB= KF * sin (α).

Рассмотрим на примере. Дан все тот же прямоугольный треугольник BKF с гипотенузой FB. Пусть угол F равен 30 градусам, второй угол B соответствует 60 градусам. Еще известен катет BK, длина которого соответствует 8 см. Вычислить искомую величину можно так:

FB = BK /cos60 = 8 см.
FB = BK /sin30 = 8 см.

  • Известен (R), описанной около треугольника с прямым углом. Как найти гипотенузу при рассмотрении такой задачи? Из свойства окружности, описанной вокруг треугольника с прямым углом известно, что центр такой окружности совпадает с точкой гипотенузы, разделяющей ее пополам. Простыми словами - радиус соответствует половине гипотенузы. Отсюда гипотенуза равна двум радиусам. FB=2*R. Если же дана аналогичная задача, в которой известен не радиус, а медиана, то следует обратить внимание на свойство окружности, описанной вокруг треугольника с прямым углом, которое говорит, что радиус равен медиане, проведенной к гипотенузе. Используя все эти свойства, задача решается таким же способом.

Если стоит вопрос, как найти гипотенузу равнобедренного прямоугольного треугольника, то необходимо обратится все к той же теореме Пифагора. Но, в первую очередь вспомним, что равнобедренным треугольником, является треугольник, имеющий две одинаковые стороны. В случае с прямоугольным треугольником одинаковыми сторонами являются катеты. Имеем FB2= BK2+ KF2, но, так как BK= KF имеем следующее: FB2=2 BK2, FB= BK√2

Как видите, зная теорему Пифагора и свойства прямоугольного треугольника, решить задачи, при которых необходимо вычислить длину гипотенузы, очень просто. Если же все свойства запомнить сложно, выучите готовые формулы, подставив в которые известные значения можно будет рассчитать искомую длину гипотенузы.

Зная один из катетов в прямоугольном треугольнике, можно найти второй катет и гипотенузу используя тригонометрические отношения – синус и тангенс известного угла. Так как отношение противолежащего углу катета к гипотенузе равно синусу этого угла, следовательно, чтобы найти гипотенузу нужно катет разделить на синус угла. a/c=sin⁡α c=a/sin⁡α

Второй катет можно найти из тангенса известного угла, как отношение известного катета к тангенсу. a/b=tan⁡α b=a/tan⁡α

Чтобы вычислить неизвестный угол в прямоугольном треугольнике нужно из 90 градусов вычесть величину угла α. β=90°-α

Периметр и площадь прямоугольного треугольника через катет и противолежащий ему угол можно выразить, подставив полученные ранее выражения для второго катета и гипотенузы в формулы. P=a+b+c=a+a/tan⁡α +a/sin⁡α =a tan⁡α sin⁡α+a sin⁡α+a tan⁡α S=ab/2=a^2/(2 tan⁡α)

Вычислить высоту также можно через тригонометрические отношения, но уже во внутреннем прямоугольном треугольнике со стороной a, который она образует. Для этого нужно сторону a, как гипотенузу такого треугольника умножить на синус угла β или косинус α, так как согласно тригонометрическим тождествам они равнозначны. (рис. 79.2) h=a cos⁡α

Медиана гипотенузы равна половине гипотенузы или известному катету a, деленному на два синуса α. Чтобы найти медианы катетов, приведем формулы к соответствующему виду для известной стороны и углы. (рис.79.3) m_с=c/2=a/(2 sin⁡α) m_b=√(2a^2+2c^2-b^2)/2=√(2a^2+2a^2+2b^2-b^2)/2=√(4a^2+b^2)/2=√(4a^2+a^2/tan^2⁡α)/2=(a√(4 tan^2⁡α+1))/(2 tan⁡α) m_a=√(2c^2+2b^2-a^2)/2=√(2a^2+2b^2+2b^2-a^2)/2=√(4b^2+a^2)/2=√(4b^2+c^2-b^2)/2=√(3 a^2/tan^2⁡α +a^2/sin^2⁡α)/2=√((3a^2 sin^2⁡α+a^2 tan^2⁡α)/(tan^2⁡α sin^2⁡α))/2=(a√(3 sin^2⁡α+tan^2⁡α))/(2 tan⁡α sin⁡α)

Так как биссектрисой прямого угла в треугольнике является произведение двух сторон и корня из двух, деленное на сумму этих сторон, то заменив один из катетов на отношение известного катета к тангенсу, получаем следующее выражение. Аналогично, подставив отношение во вторую и третью формулы, можно вычислить биссектрисы углов α и β. (рис.79.4) l_с=(a a/tan⁡α √2)/(a+a/tan⁡α)=(a^2 √2)/(a tan⁡α+a)=(a√2)/(tan⁡α+1) l_a=√(bc(a+b+c)(b+c-a))/(b+c)=√(bc((b+c)^2-a^2))/(b+c)=√(bc(b^2+2bc+c^2-a^2))/(b+c)=√(bc(b^2+2bc+b^2))/(b+c)=√(bc(2b^2+2bc))/(b+c)=(b√(2c(b+c)))/(b+c)=(a/tan⁡α √(2c(a/tan⁡α +c)))/(a/tan⁡α +c)=(a√(2c(a/tan⁡α +c)))/(a+c tan⁡α) l_b=√(ac(a+b+c)(a+c-b))/(a+c)=(a√(2c(a+c)))/(a+c)=(a√(2c(a+a/sin⁡α)))/(a+a/sin⁡α)=(a sin⁡α √(2c(a+a/sin⁡α)))/(a sin⁡α+a)

Средняя линия проходит параллельно одной из сторон треугольника, при этом образуя еще один подобный прямоугольный треугольник с такими же по величине углами, в котором все стороны в два раза меньше, чем у изначального. Исходя из этого, средние линии можно найти по следующим формулам, зная только катет и противолежащий ему угол. (рис.79.7) M_a=a/2 M_b=b/2=a/(2 tan⁡α) M_c=c/2=a/(2 sin⁡α)

Радиус вписанной окружности равен разности катетов и гипотенузы, деленной на два, а чтобы найти радиус описанной окружности, нужно разделить на два гипотенузу. Заменяем второй катет и гипотенузу на отношения катета a к синусу и тангенсу соответственно. (рис. 79.5, 79.6) r=(a+b-c)/2=(a+a/tan⁡α -a/sin⁡α)/2=(a tan⁡α sin⁡α+a sin⁡α-a tan⁡α)/(2 tan⁡α sin⁡α) R=c/2=a/2sin⁡α

2024 english-speak.ru. Изучение английского языка.