Буферные свойства цитоплазмы определяются наличием. Структурная организация живых организмов. Химическая организация клетки. Буферные свойства крови

Вопрос 1. Каковы особенности пространствен­ной организации молекул воды, обуславливающие ее биологическое значение?

Молекулы воды представляют собой дипо­ли — структуры, на положительном полюсе которых находятся два атома водорода, а на отрицательном полюсе — атом кислорода. По­ложительные и отрицательные полюса разных молекул воды притягиваются друг к другу. Это приводит к образованию так называемых водородных связей, что обеспечивает высо­кую теплоемкость воды, а также особенности процессов смены ее агрегатного состояния (плавление, испарение). Кроме того, Н20-ди- поли активно взаимодействуют с любыми мо­лекулами, имеющими заряженные участки. Это обуславливает важнейшее свойство воды как универсального растворителя органиче­ских и неорганических веществ.

Вопрос 2. В чем заключается биологическая роль воды?

Вода выполняет в клетке множество важ­ных функций:

служит универсальным растворителем;
является средой для большинства процес­сов, протекающих в клетке;
сама участвует во многих биохимических реакциях — гидролизе органических веществ, высвобождении энергии при распаде АТФ, фо­тосинтезе и др.;
высокая теплоёмкость и теплопровод­ность воды облегчает организмам (в том числе теплокровным) процесс поддержания теплово­го равновесия с окружающей средой;
высокая интенсивность испарения защи­щает живые существа от перегрева;
почти полная несжимаемость воды обес­печивает поддержание формы отдельных кле­ток и целых организмов;
вязкость придает воде свойства смазки;
высокая сила поверхностного натяжения облегчает транспорт веществ в сосудах расте­ний.Вопрос 3. Какие вещества называют гидро­фильными? Гидрофобными?

Гидрофильными называют вещества, ко­торые хорошо растворяются в воде. К ним от­носят соли, аминокислоты, сахара, белки, простые спирты. Как правило, в составе их молекул присутствуют заряженные участки (спиртовые группы, аминогруппы и т. п.); не­редко при растворении гидрофильных веществ образуются заряженные частицы — ионы. Гидрофобные вещества, напротив, плохо или совсем не растворяются в воде. В их число вхо­дят в первую очередь жиры и жироподобные соединения, а также полисахариды (хитин, целлюлоза).

Вопрос 4. Какие вещества поддерживают pH клетки на постоянном уровне?

Способность сохранять кислотно-щелоч­ной баланс, т. е. поддерживать постоянное значение pH, обеспечивается так называемы­ми буферными свойствами клетки. Это означа­ет, что при добавлении небольших количеств кислот или щелочей концентрация ионов во­дорода (иначе — pH) в цитоплазме практиче­ски не изменяется. Такой эффект достигается благодаря присутствию в клетке отрицательно заряженных ионов — остатков слабых кислот (в первую очередь НСО3 и НРО2|4). При закислении (избытке ионов Н +) эти ионы могут пре­вращаться в Н 2 С0 3 и Н 2 Р0 4 соответственно. Напротив, при дефиците Н + (защелачивание цитоплазмы) НСО3 и НРО2|4 способны отдавать часть своих ионов водорода. Буферные свой­ства клетки очень важны, поскольку боль­шинство биологически активных веществ (в частности, белки-ферменты) могут вступать в реакции только при строго определенном уровне pH.

Вопрос 5. Расскажите о роли минеральных со­лей в жизнедеятельности клетки.

Минеральные соли и входящие в их состав элементы участвуют во многих процессах жиз­недеятельности клетки. Так, остатки слабых кислот (НСО3, НРО2|4) обеспечивают ее буфер­ные свойства. Движение ионов Na + , К + , Са 2+ , С1 через мембраны клеток лежит в основе всех электрических явлений, наблюдаемых в живых организмах (вплоть до разрядов элект­рических рыб); без этого мышечные волокна не способны сокращаться, а нервная ткань — про­водить сигналы. Остатки фосфорной кислоты нужны для синтеза нуклеотидов и фосфолипи­дов. Фосфаты кальция и магния участвуют в об­разовании костей, а карбонат кальция является основой раковины моллюсков.

краткое содержание других презентаций

«Особенности химического состава клетки» - Раствор. Ионы металлов. Химические элементы клетки. Кислород. Соотношение органических и неорганических веществ в клетке. Минеральные вещества в клетке. Клетки. Тезисы. Водородные связи. Углерод. Вода. Виды воды. Химические компоненты клетки. Записи в тетради. Группы химических элементов. Особенности химического состава клетки. Собаки. Вода в организме распределена неравномерно.

«Химический состав и строение клетки» - Нуклеиновые кислоты. Клетка. Науки. Химический состав клетки. Химические элементы. Жиры. Клеточный центр. Основной источник энергии. Митохондрии. Белки. Анатомия. Хранение наследственной информации. Мембрана. Рибосомы. Строение и химический состав клетки. Световой микроскоп. Строение клетки. Работа с тетрадью.

«Неорганические вещества клетки» - Элементы, входящие в состав клетки. Микроэлементы. Содержание химических соединений в клетке. Содержание в разных клетках. Биогенные элементы. Химический состав клетки. Ультрамикроэлементы. Кислород. Функции воды. 80 химических элементов. Магний. Макроэлементы.

«Биология «Химический состав клетки»» - Признаки реакции. Биогенные элементы. План урока. Различия живой и неживой природы. C -основа всех органических веществ. Cu -ферменты гемоцианины, синтез гемоглобина, фотосинтез. Кислород. Химический состав клетки. Микроэлементы. Ответить на вопросы. Макроэлементы. Ультрамикроэлементы. Цинк. Состав человеческого тела.

«Вещества клетки» - История открытия витаминов. Витамин. Вирусы и бактериофаги. АТФ и другие органические вещества клетки. Интересные факты. Функция АТФ. Жизнь вирусов. Витамины в жизнедеятельности клетки. Современная классификация витаминов. Жизненный цикл бактериофага. Микрофотографии вирусов. Как и где образуется АТФ. Витамины и витаминоподобные вещества. Значение вирусов. ВТМ имеет палочковидную форму. АТФ. Строение вирусов.

«Урок «Химический состав клетки»» - Ферменты. Свойства белковой молекулы. РН буферность. Липиды. РНК – одиночная цепочка. Неорганические вещества. Нуклеиновые кислоты. Углеводы. Принцип комплементарности. Молекулярный уровень. Нуклеотид. Белки. Виды РНК. ДНК – двойная спираль. Молекула водорода. Репликация. Химический состав клетки. Структура белка. Элементарный состав клетки.

Тестовые задания по теме

«НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА КЛЕТКИ»

Выберите один правильный ответ из предложенных вариантов:

1. Какие химические элементы, содержащиеся в клетке, относят к макроэлементам?
а) Zn , I, F, Br;

в) Ni, Cu, I, Br.

г) Au, Ag, Ra, U.

2. Каковы функции воды в клетке?


в) источник энергии.

г) передача нервного импульса

3. Какие ионы входят в состав гемоглобина?
а) Mg 2+ ;

4. Передача возбуждения по нерву или мышце объясняется:

а) разностью концентраций ионов натрия и калия внутри и вне клетки

б) разрывом водородных связей между молекулами воды

в) изменением концентрации водородных ионов

г) теплопроводностью воды

5 . Из перечисленных веществ является гидрофильными:

а) крахмал

г) целлюлоза

6. В состав молекулы хлорофилла входят ионы

г) Na +
7. Одновременно входит в состав костной ткани и нуклеиновых кислот:

б) фосфор

в) кальций

8 . У детей развивается рахит при недостатке:

а) марганца и железа

б) кальция и фосфора

в) меди и цинка

г) серы и азота

9 . В состав желудочного сока входит:

10. Больше всего воды содержится в клетках:
а) эмбриона;

б) молодого человека;

в) старика.

г) взрослого человека

11. Какие химические элементы, содержащиеся в клетке, относят к микроэлементам?
а) S, Na, Ca, K;

в) Ni, Cu, I, Br.

г) Р, S, Cl, Nа

12. В состав желудочного сока входит
а) серная кислота;

б) соляная кислота;

в) угольная кислота.

г) фосфорная кислота

13. Каковы функции минеральных веществ в клетке?
а) передача наследственной информации;
б) среда для химических реакций;
в) источник энергии;

г) поддержание осмотического давления клетки.

14. Какие ионы влияют на свёртываемость крови?
а) Mg 2+ ;

15 . Железо входит в состав:

в) гемоглобина

г) хлорофилла

16. Меньше воды содержится в клетках:
а) костной ткани;

б) нервной ткани;

в) мышечной ткани.

г) жировой ткани

17. Вещества, плохо растворимые в воде, называются:
а) гидрофильными;

б) гидрофобными;

в) амфифильными.

г) амфотерными

18. Буферность в клетке обеспечивают ионы:
а) Na + , K + ;

б) SO 4 2- , Cl - ;

в) HCO 3 - , CO 3 2-.

г) Mg 2+ ; Fe 2+

19. Вода – основа жизни, т.к. она:
а) может находиться в трех состояниях (жидком, твердом и газообразном);
б) является растворителем, обеспечивающим как приток веществ в клетку, так и удаление из нее продуктов обмена;
в) охлаждает поверхность при испарении.

г) обладает свойством теплопроводности

20 . Из перечисленных веществ является гидрофобным:

г) перманганат калия

Эталоны ответов

Буферность и осмос.
Соли в живых организмах находятся в растворенном состоянии в виде ионов – положительно заряженных катионов и отрицательно заряженных анионов.

Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много калия и очень мало натрия. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражительность клетки зависит от соотношения концентраций ионов Na+, K+, Ca 2+, Mg 2+. Разность концентраций ионов по разные стороны мембраны обеспечивает активный перенос веществ через мембрану.

В тканях многоклеточных животных Са 2+ входит в состав межклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей зависят осмотическое давление в клетке и ее буферные свойства.

Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне.

Существует две буферные системы:

1)фосфатная буферная система – анионы фосфорной кислоты поддерживают рН внутриклеточной среды на уровне 6,9

2)бикарбонатная буферная система – анионы угольной кислоты поддерживают рН внеклеточной среды на уровне 7,4.

Рассмотрим уравнения реакций, протекающих в буферных растворах.

Если в клетке увеличивается концентрация Н + , то происходит присоединение катиона водорода к карбонат-аниону:

При увеличении концентрации гидроксид-анионов происходит их связывание:

Н + ОН – + Н 2 О.

Так карбонат-анион может поддерживать постоянную среду.

Осмотическими называют явления, происходящие в системе, состоящей из двух растворов, разделенных полупроницаемой мембраной. В растительной клетке роль полупроницаемых пленок выполняют пограничные слои цитоплазмы: плазмалемма и тонопласт.

Плазмалемма - наружная мембрана цитоплазмы, прилегающая к клеточной оболочке. Тонопласт - внутренняя мембрана цитоплазмы, окружающая вакуоль. Вакуоли представляют собой полости в цитоплазме, заполненные клеточным соком - водным раствором углеводов, органических кислот, солей, белков с низким молекулярным весом, пигментов.

Концентрация веществ в клеточном соке и во внешней среде (в почве, водоемах) обычно не одинаковы. Если внутриклеточная концентрация веществ выше, чем во внешней среде, вода из среды будет поступать в клетку, точнее в вакуоль, с большей скоростью, чем в обратном направлении. При увеличении объема клеточного сока, вследствие поступления в клетку воды, увеличивается его давление на цитоплазму, плотно прилегающую к оболочке. При полном насыщении клетки водой она имеет максимальный объем. Состояние внутреннего напряжения клетки, обусловленное высоким содержанием воды и развивающимся давлением содержимого клетки на ее оболочку носит название тургора Тургор обеспечивает сохранение органами формы (например, листьями, неодревесневшими стеблями) и положения в пространстве, а также сопротивление их действию механических факторов. С потерей воды связано уменьшение тургора и увядание.

Если клетка находится в гипертоническом растворе, концентрация которого больше концентрации клеточного сока, то скорость диффузии воды из клеточного сока будет превышать скорость диффузии воды в клетку из окружающего раствора. Вследствие выхода воды из клетки объем клеточного сока сокращается, тургор уменьшается. Уменьшение объема клеточной вакуоли сопровождается отделением цитоплазмы от оболочки - происходит плазмолиз .

В ходе плазмолиза форма плазмолизированного протопласта меняется. Вначале протопласт отстает от клеточной стенки лишь в отдельных местах, чаще всего в уголках. Плазмолиз такой формы называют уголковым

Затем протопласт продолжает отставать от клеточных стенок, сохраняя связь с ними в отдельных местах, поверхность протопласта между этими точками имеет вогнутую форму. На этом этапе плазмолиз называют вогнутым Постепенно протопласт отрывается от клеточных стенок по всей поверхности и принимает округлую форму. Такой плазмолиз носит название выпуклого

Если плазмолизированную клетку поместить в гипотонический раствор, концентрация которого меньше концентрации клеточного сока, вода из окружающего раствора будет поступать внутрь вакуоли. В результате увеличения объема вакуоли повысится давление клеточного сока на цитоплазму, которая начинает приближаться к стенкам клетки, пока не примет первоначальное положение - произойдет деплазмолиз

Задание №3
Прочитав предложенный текст, ответьте на следующие вопросы.
1)определение буферности

2)от концентрации каких анионов зависят буферные свойства клетки

3)роль буферности в клетке

4)уравнение реакций, протекающих в бикарбонатной буферной системе (на магнитной доске)

5)определение осмоса (привести примеры)

6)определение плазмолиза и деплазмолиза слайды

Буферы представляют собой химические вещества, такие как фосфор, калий, магний, селен, цинк которые помогают жидкости сопротивляться изменению ее кислотных свойств при добавлении других химических веществ, которые обычно вызывают изменение этих свойств. Буферы необходимы для живых клеток. Это связано с тем, что буферы поддерживают правильный рН жидкости.

Что такое рН

Это показатель того, насколько кислая жидкость. Например, лимонный сок имеет низкий рН от 2 до 3 и очень кислый - так же, как сок в вашем желудке, который переваривает пищу. Поскольку кислотные жидкости могут разрушать белки, а клетки заполнены белками, клеткам необходимо иметь буферы внутри и снаружи, чтобы защитить свои белковые свойства.

  • Противоположностью химического вещества, которое является кислотой, является химическое вещество, которое является основанием, и оба могут существовать в жидкости. Кислота высвобождает ион водорода в жидкость, а основание выталкивает из него ион водорода. Чем больше свободно плавающих ионов водорода присутствует в жидкости, тем более кислой становится жидкость.
  • Буферы представляют собой химические вещества, которые могут легко выделять или поглощать ионы водорода в жидкости, то есть они способны противостоять изменению рН, контролируя количество свободных ионов водорода. Шкала рН находится в диапазоне от 0 до 14. Значение pH от 0 до 7 считается кислотным, а рН от 7 до 14 считается основным. PH 7, посередине, нейтрален и представляет собой чистую воду.
  • Опасность изменения рН внутри клетки заключается в том, что рН резко влияет на структуру белков.

Клетка состоит из различных типов белков, и каждый белок работает только тогда, когда у него есть правильная трехмерная форма. Форма белка удерживается на месте силами притяжения внутри белка, как и многие мини-магниты здесь и там, которые соединяются, чтобы удерживать весь протеин на месте. Поэтому, если внутри клетки становится слишком кислым или слишком основным, тогда белки начинают терять форму и больше не работают. Клетка становится как фабрика без рабочих и без ремонтников. Поэтому буферы внутри ячейки предотвращают это.

2024 english-speak.ru. Изучение английского языка.