Определенный интеграл суть физическая и математическая. Геометрическое и механическое истолкование определенного интеграла. О несобственных интегралах

Процесс решения интегралов в науке под названием "математика" называется интегрированием. С помощью интегрирования можно находить некоторые физические величины: площадь, объем, массу тел и многое другое.

Интегралы бывают неопределенными и определенными. Рассмотрим вид определенного интеграла и попытаемся понять его физический смысл. Представляется он в таком виде: $$ \int ^a _b f(x) dx $$. Отличительная черта написание определенного интеграла от неопределенного в том, что есть пределы интегрирования a и b. Сейчас узнаем для чего они нужны, и что всё-таки значит определенный интеграл. В геометрическом смысле такой интеграл равен площади фигуры, ограниченной кривой f(x), линиями a и b, и осью Ох.

Из рис.1 видно, что определенный интеграл - это и есть та самая площадь, что закрашена серым цветом. Давайте, проверим это на простейшем примере. Найдем площадь фигуры на изображении представленном ниже с помощью интегрирования, а затем вычислим её обычным способом умножения длины на ширину.

Из рис.2 видно, что $ y=f(x)=3 $, $ a=1, b=2 $. Теперь подставим их в определение интеграла, получаем, что $$ S=\int _a ^b f(x) dx = \int _1 ^2 3 dx = $$ $$ =(3x) \Big|_1 ^2=(3 \cdot 2)-(3 \cdot 1)=$$ $$=6-3=3 \text{ед}^2 $$ Сделаем проверку обычным способом. В нашем случае длина = 3, ширина фигуры = 1. $$ S = \text{длина} \cdot \text{ширина} = 3 \cdot 1 = 3 \text{ед}^2 $$ Как видим, всё отлично совпало.

Появляется вопрос: как решать интегралы неопределенные и какой у них смысл? Решение таких интегралов - это нахождение первообразных функций. Этот процесс противоположный нахождению производной. Для того, чтобы найти первообразную можно использовать нашу помощь в решении задач по математике или же необходимо самостоятельно безошибочно вызубрить свойства интегралов и таблицу интегрирования простейших элементарных функций. Нахождение выглядит так $$ \int f(x) dx = F(x) + C \text{где} F(x) $ - первообразная $ f(x), C = const $.

Для решения интеграла нужно интегрировать функцию $ f(x) $ по переменной. Если функция табличная, то записывается ответ в подходящем виде. Если же нет, то процесс сводится к получению табличной функции из функции $ f(x) $ путем хитрых математических преобразований. Для этого есть различные методы и свойства, которые рассмотрим далее.

Итак, теперь составим алгоритм как решать интегралы для чайников?

Алгоритм вычисления интегралов

  1. Узнаем определенный интеграл или нет.
  2. Если неопределенный, то нужно найти первообразную функцию $ F(x) $ от подынтегральной $ f(x) $ с помощью математических преобразований приводящих к табличному виду функцию $ f(x) $.
  3. Если определенный, то нужно выполнить шаг 2, а затем подставить пределы $ а $ и $ b $ в первообразную функцию $ F(x) $. По какой формуле это сделать узнаете в статье "Формула Ньютона Лейбница".

Примеры решений

Итак, вы узнали как решать интегралы для чайников, примеры решения интегралов разобрали по полочкам. Узнали физический и геометрический их смысл. О методах решения будет изложено в других статьях.


Физический смысл интеграла очень прост.  


Физический смысл интеграла (аа аа) заключается в том, что он описывает отталкивание между двумя электронами, принадлежащими одному и тому же атомному центру.  

Физический смысл интегралов Ариса можно описать лишь весьма приближенно; однако всегда полезно наглядно представить себе факторы, входящие в выражение для высоты, эквивалентной теоретической тарелке. Грубо говоря, интегрирование по t дает время, которое возрастает с увеличением размеров колонки. Это можно объяснить тем, что при увеличении размеров колонки возрастают расстояния, вдоль которых диффундируют молекулы. Однако, несмотря на это, действительное значение Н (х) определяется эффективной скоростью, значение которой в свою очередь определяется профилем скоростей.  

Обратим внимание на физический смысл интегралов в этом уравнении. Первый интеграл выражает уменьшение секундного расхода через сечение в пограничном слое высотой 8, обусловленное влиянием вязкости.  

Для последующего вывода необязательно дать физический смысл Зтого интеграла, но легко сообразить, что он выражает удвоенную работу внешних нагрузок в процессе деформации тела, если эти нагрузки возрастают весьма медленно от начального естественного состояния тела.  

Рассмотрим теперь более подробно природу и физический смысл интегралов такого рода.  

Цель работы состоит в изучении основных явлений, демонстрирующих общие законы динамики системы точек и физический смысл интегралов движения. В общем случае задача нелинейна, и получить ее аналитическое решение не удается. В то же время проведение серии машинных экспериментов позволяет составить достаточно полное и наглядное представление об особенностях движения изучаемой механической системы. Специфика постановки машинного эксперимента проявляется, во-первых, в необходимости предварительной оценки характерного времени протекания процессов для правильной организации вывода результатов решения задачи. Эта оценка определяется заданием конкретных значений параметров системы и начальных условий и проводится студентом предварительно перед каждым вводом исходных данных. Во-вторых, некорректное задание параметров или начальных условий может приводить к аварийным прерываниям решения, не связанным с существом задачи и определяемым ее конкретной реализацией на машине. Студенты убеждаются также, что точность решения зависит как от выбора алгоритма, так и от исходных данных. Нетрудно проследить, например, как изменяют свое численное значение интегралы движения, если выбран сравнительно крупный шаг интегрирования дифференциальных уравнений.  

Вместе с тем, для многих приложе ний наиболее существенна именно / Атеория, что, в частности, объясняется физическим смыслом интеграла от квадрата модуля.  

При этом существование предела (4) для конечной функции, заданной на конечной области, может быть доказано математически, без ссылки на физический смысл интеграла.  

На рис. 1 а и 1, б изображены типичные примеры; на рис. 1, в показано, что две кривые могут быть зацеплены даже когда коэффициент зацепления равен нулю, а соленоид на рис. 1 г демонстрирует физический смысл интеграла Гаусса как работы по переносу единичного магнитного полюса по замкнутой кривой в магнитном поле, вызванном протеканием единичного электрического тока по другой кривой.  

Формула (2.27) представляет собой модифицированный принцип Гюйгенса - Френеля в нелинейной оптике. Физический смысл интеграла (2.27) довольно прост.  

Возможны дальнейшие обобщения интеграла Мора, когда прикладывается не единичный силовой фактор, а единичная система сил. Физический смысл интеграла Мора вытекает на того, что он представляет возможную работу единичной системы сил на перемещениях основной системы.  

Страницы:      1

Возвратимся к задаче о площади криволинейной трапеции и определению определенного интеграла. Мы видим, что площадь криволинейной трапеции, ограниченной кривой y=f(x), где f(x)0 на отрезке , осью x и прямыми x = a и x = b численно равна определенному интегралу, т. е.

Досих пор мы рассматривали определенный интеграл с постоянными пределами интегрирования a и b. Если изменять, например, верхний предел, не выходя из отрезка , величина интеграла будет меняться. Другими словами, интеграл c переменным верхним пределом представляет собой функцию своего верхнего предела. Таким образом, если мы имеем интеграл


с постояннымнижним пределом а и переменным верхним пределом х, то величина этого интеграла будет функцией верхнего предела х. Обозначим эту функцию через Ф(х), т. е. положим

(2.1)

и назовем ее определенным интегралом с переменным верхним пределом. Геометрически функция Ф(х) представляет собой площадь заштрихованной криволинейной трапеции, если f(x)0 (рис. 2)

Теперь рассмотрим доказательство теоремы, одной из основных теорем математического анализа.

Теорема 3 . Если f(t) – непрерывная функция и

то имеет место равенство

или
(2.2)

Иными словами, производная определенного интеграла от непрерывной функции по переменному верхнему пределу существует и равна значению подынтегральной функции в верхнем пределе.

Доказательство. Возьмем любое значение x и придадим ему приращение x  0 такое, чтобы x + x  , т. е.
. Тогда функция Ф(х) получит новое значение:

Находим приращение функции Ф(х):

Ф = Ф(x+x) – Ф(x) =

Применяя теорему о среднем к последнему интегралу получим:

где С – число, заключенное между числами x и x + x. Отсюда

Если теперь x 0, то c  x и f(c)  f(x) (в силу непрерывности f(x) на ). Поэтому переходя к пределу в последнем равенстве получаем



f ( x ) или
,

что и требовалось доказать.

Следствие. Определенный интеграл с переменным верхним пределом является одной из первообразных для непрерывной подынтегральной функции. Другими словами, для любой непрерывной функции существует первообразная,

Замечание. Интеграл с переменным верхним пределом интегрирования используется при определении многихновых функций, например:



.

3. Формула Ньютона - Лейбница

Как мы уже отмечали, вычисление определенного интеграла методом, основанным на нахождении предела интегральных сумм, как правило, связано с большими трудностями. Поэтому существует другой как правило более удобный метод вычисления определенных интегралов, который основан на тесной связи, существующей между понятиями определенного и неопределенного интеграла. Эту связь выражает следующая

Теорема 4 . Определенный интеграл от непрерывной функции равен разности значений любых еепервообразных для верхнего и нижнего предела интегрирования.

Доказательство. Мы установили, что функция f(x), непрерывная на имеет на этом отрезке первообразную, причем, одной из первообразных является функция

.

Пусть F(x) - любая другая первообразная для функции f(x) на том же отрезке . Так как первообразные Ф(х) и F(х) отличаются на постоянную (см. свойства первообразных), то имеет месторавенство


где С – некоторое число. Подставляя в это равенство значение x = a будем иметь 0 = F (a ) + C , C = - F (a ), т. е.для x  имеем

Полагая x = b, получаем соотношение

(3.1)

Формула (3.1) называется формулой Ньютона-Лейбница. Разность F (b ) – F (a ) принято условно записывать в виде

и тогда формула (3.1) принимает вид

Итак, полученнаянами формула (3.1)с одной стороны, устанавливает связь между определенным и неопределенным интегралами, с другой стороны, она дает простой метод вычисления определенного интеграла:

определенный интеграл от непрерывной функции равен разности значений любой ее первообразной, вычисленной для верхнего и нижнего пределов интегрирования.

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F(k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F(k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$

Инструкция

Интегрирование - это операция, которая противоположна дифференцированию. Поэтому, если вы хотите хорошо научиться интегрировать, то вам сначала необходимо научиться находить от любых функций производные. Научиться этому можно достаточно быстро. Ведь есть специальная производных. При ее помощи уже можно простые интегралы. А есть и таблица основных неопределенных интегралов. Она представлена на рисунке.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

2024 english-speak.ru. Изучение английского языка.