Термоядерные процессы. Термоядерные реакции. Термоядерные реакции на Солнце

Термоядерная реакция

Реакция слияния легких ядер при очень высокой температуре, сопровождающаяся выделением энергии, называется термоядерной реакцией.

Для слияния необходимо, чтобы расстояние между ядрами приблизительно было равно 0,000 000 000 001 см. Однако этому препятствуют кулоновские силы. Они могут быть преодолены при наличии у ядер большой кинетической энергии. Особенно большое практическое значение имеет то, что при термоядерной реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции, например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ, а при делении ядра урана на один нуклон приходится >0,9 МэВ. Управляемая термоядерная реакция - энергетически выгодная реакция. Однако она может идти лишь при очень высоких температурах (порядка несколько сотен млн. градусов). При большой плотности вещества такая температура может быть достигнута путем создания в плазме мощных электронных разрядов. При этом возникает проблема - трудно удержать плазму. Самоподдерживающиеся термоядерные реакции происходят в звездах.

В настоящее время в России и ряде других стран ведутся работы по осуществлению управляемой термоядерной реакции.

Энергетический кризис стал реальной угрозой для человечества. В связи с этим ученые предложили добывать изотоп тяжелого водорода - дейтерий - из морской воды и подвергать реакции ядерного расплава при температурах около 100 миллионов градусов Цельсия. При ядерном расплаве дейтерий, полученный из одного килограмма морской воды будет способен произвести столько же энергии, сколько выделяется при сжигании 300 литров бензина.

ТОКАМАК
(тороидальная магнитная камера с током)

Токамак – это электрофизическое устройство, основное назначение которого – формирование плазмы, что возможно при температурах около 100 млн. градусов, и сохранение её достаточно долгое время в заданном объеме. Возможность получения плазмы при сверхвысоких температурах позволяет осуществить термоядерную реакцию синтеза ядер гелия из исходного сырья, изотопов водорода (дейтерия и трития). В ходе реакции должна выделяться энергия, которая будет существенно больше, чем энергия, затрачиваемая на формирование плазмы.
Основы теории управляемого термоядерного синтеза заложили в 1950 году И. Е. Тамм и А. Д. Сахаров, предложив удерживать магнитным полем горячую плазму, образовавшуюся в результате реакций.
Эта идея и привела к созданию термоядерных реакторов - токамаков. При большой плотности вещества требуемая высокая температура в сотни млн. градусов может быть достигнута путем создания в плазме мощных электронных разрядов. Проблема: трудно удержать плазму.
Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Наиболее мощный современный ТОКАМАК, служащий только лишь для исследовательских целей, находится в городе Абингдон недалеко от Оксфорда. Высотой в 10 метров, он вырабатывает плазму и сохраняет ей жизнь пока всего лишь около 1 секунды.

Управляемая термоядерная реакция - энергетически выгодная реакция. При такой реакции на каждый нуклон выделяется намного больше энергии, чем при ядерной реакции. Например, при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ, а при делении ядра урана на один нуклон приходится »0,9 МэВ.

Дефект масс.

Измерения масс ядер показывают, что масса ядра (Мя) всегда меньше суммы масс покоя слагающих его свободных нейтронов и протонов.
При делении ядра: масса ядра всегда меньше суммы масс покоя образовавшихся свободных частиц.
При синтезе ядра: масса образовавшегося ядра всегда меньше суммы масс покоя свободных частиц, его образовавших.

Дефект масс является мерой энергии связи атомного ядра. Дефект масс равен разности между суммарной массой всех нуклонов ядра в свободном состоянии и массой ядра:

(20.2)
где М я – масса ядра (из справочника)
Z – число протонов в ядре
m p – масса покоя свободного протона (из справочника)
N – число нейтронов в ядре
m n – масса покоя свободного нейтрона (из справочника)

Уменьшение массы при образовании ядра означает, что при этом уменьшается энергия системы нуклонов.

Атомная Энергетика

Развитие атомной энергетики предопределено прогнозируемым истощением органического топлива. Только атомная энергетика способна обеспечить возрастающие потребности в электроэнергии.
Очевидные преимущества атомных электростанций, по сравнению с тепловыми, следующие:

1. отсутствие вредных выбросов в атмосферу;

2. в 3–4 раза меньшая площадь отторгаемых земель, необходимая для размещения АЭС;

3. независимость от источников энергоресурсов.

Сложными являются проблемы:

1. захоронения и хранения радиоактивных отходов;

2. риск, связанный с крупными авариями на ядерных реакторах.

Задача снижения риска аварий на АЭС решается путем повышения надежности существующих энергоблоков и разработки реакторов нового поколения, в которых безопасность обеспечивается на основе естественных обратных связей, когда ошибки персонала не приводят к развитию аварий.
Проблема захоронения и хранения радиоактивных отходов существует и решается специалистами всего мира.
С технической точки зрения ядерная энергетика может быть безопасной в любой степени, т. е. это вопрос стоимости, экономичности и конкурентоспособности. Мировой опыт эксплуатации АЭС свидетельствует, что их радиоактивные выбросы при нормальной работе создают дозу облучения, составляющую доли процента от облучения естественным радиоактивным фоном. Это влияние практически не обнаруживается на фоне загрязнения биосферы в результате испытания ядерного оружия.

Термоядерная реакция относится к разряду ядерных, но, в отличие от последних, в ней происходит процесс образования, а не разрушения.
На сегодняшний день разработала два варианта проведения термоядерного синтеза – взрывной термоядерный синтез и управляемый термоядерный синтез.

Кулоновский барьер или почему люди еще не взлетели на воздух

Атомные ядра несут положительный заряд. Это означает, что при их сближении начинает действовать сила отталкивания, которая обратно пропорциональна квадрату расстояния между ядрами. Однако на определенном расстоянии, которое равно 0,000 000 000 001 см, начинает действовать сильное взаимодействие, приводящие к слиянию атомных ядер.

В результате выделяется колоссальное количество энергии. То расстояние, которое препятствует слиянию ядер, называется кулоновским барьером, или потенциальным барьером. Условие, при котором это происходит - высокая температура, порядка 1 миллиарда градусов Цельсия. При этом любое вещество превращается в плазму. Основным веществами для осуществления термоядерной реакции являются и тритий.

Взрывной термоядерный синтез

Такой способ проведения термоядерной реакции возник намного раньше управляемого и впервые был применен в водородной бомбе. Основным взрывающимся веществом является дейтерид лития.

Бомба состоит из триггера – плутониевого заряда с усилителем и контейнера с термоядерным горючим. Сначала взрывается триггер с испусканием импульса мягкого рентгеновского излучения. Оболочка второй ступени вместе с пластиковым наполнителем поглощают эти излучения, нагреваясь до высокотемпературной плазмы, которая находится под высоким давлением.

Создается реактивная тяга, которая сдавливает объем второй ступени, уменьшая межъядерной расстояние в тысячи раз. При этом термоядерная реакция не происходит. Завершающим этапом является ядерный взрыв плутониевого стержня, который и запускает ядерную реакцию. Дейтерид лития с нейтронами с образованием трития.

Управляемый термоядерный синтез

Управляемый термоядерный синтез возможен потому, что применяются особые типы реакторов. Топливом служит дейтерий, тритий, гелия, литий, бор-11.

Реакторы:
1) Реактор, основанный на создании квазистационарной системы, в которой плазма удерживается магнитным полем.
2) Реактор на основе импульсной системы. В этих реакторах небольшие мишени, содержащие дейтерий и тритий, кратковременно нагревают сверхмощным потоком частиц или лазером.

​Ученые Принстонской лаборатории физики плазмы предложили идею самого долговечного устройства для ядерного синтеза, которое сможет работать более 60 лет. В данный момент это трудноосуществимая задача: ученые бьются над тем, чтобы заставить термоядерный реактор проработать в течение нескольких минут - а тут годы. Несмотря на сложность, строительство термоядерного реактора - одна из самых перспективных задач науки, которая может принести огромную пользу. Рассказываем, что нужно знать о термоядерном синтезе.

1. Что такое термоядерный синтез?

Не пугайтесь этого громоздкого словосочетания, на деле все довольно просто. Термоядерный синтез - это разновидность ядерной реакции.

В ходе ядерной реакции ядро атома взаимодействует либо с элементарной частицей, либо с ядром другого атома, за счет чего состав и строение ядра изменяются. Тяжелое атомное ядро может распасться на два-три более легких - это реакция деления. Существует также реакция синтеза: это когда два легких атомных ядра сливаются в одно тяжелое.

В отличие от ядерного деления, которое может проходить как самопроизвольно, так и вынужденно, ядерный синтез невозможен без подвода внешней энергии. Как известно, притягиваются противоположности, но вот атомные ядра заряжены положительно - поэтому они отталкиваются друг от друга. Эта ситуация называется кулоновским барьером. Чтобы преодолеть отталкивание, необходимо разогнать эти частицы до сумасшедших скоростей. Это можно осуществить при очень высокой температуре - порядка нескольких миллионов кельвинов. Именно такие реакции и называются термоядерными.

2. Зачем нам термоядерный синтез?

В ходе ядерных и термоядерных реакций выделяется огромное количество энергии, которую можно использовать в различных целях - можно создать мощнейшее оружие, а можно преобразовать ядерную энергию в электричество и снабдить им весь мир. Энергия распада ядра давно используется на атомных электростанциях. Но термоядерная энергетика выглядит перспективнее. При термоядерной реакции на каждый нуклон (так называются составляющие ядра, протоны и нейтроны) выделяется намного больше энергии, чем при ядерной реакции. К примеру, при делении ядра урана на один нуклон приходится 0,9 МэВ (мегаэлектронвольт), а при синтезе ядра гелия из ядер водорода выделяется энергия, равная 6 МэВ. Поэтому ученые учатся проводить термоядерные реакции.

Исследования термоядерного синтеза и строительство реакторов позволяют расширить высокотехнологичное производство, которое полезно и в других сферах науки и хай-тека.

3. Какие бывают термоядерные реакции?

Термоядерные реакции делят на самоподдерживающиеся, неуправляемые (используются в водородных бомбах) и управляемые (подходят для мирных целей).

Самоподдерживающиеся реакции проходят в недрах звезд. Однако на Земле нет условий для проведения таких реакций.

Неуправляемый, или взрывной термоядерный синтез люди проводят давно. В 1952 году в ходе операции "Иви Майк" американцы взорвали первое в мире термоядерное взрывное устройство, которое не имело практической ценности в качестве оружия. А в октябре 1961 года прошли испытания первой в мире термоядерной (водородной) бомбы ("Царь-бомба", "Кузькина мать"), разработанной советскими учеными под руководством Игоря Курчатова. Это было самое мощное взрывное устройство за всю историю человечества: полная энергия взрыва, по разным данным, составляла от 57 до 58,6 мегатонн в тротиловом эквиваленте. Чтобы взорвать водородную бомбу, необходимо сначала в ходе обычного ядерного взрыва получить высокую температуру - лишь тогда атомные ядра начнут реагировать.

Мощность взрыва при неуправляемой ядерной реакции очень велика, кроме того, высока доля радиоактивного загрязнения. Поэтому чтобы использовать термоядерную энергию в мирных целях, необходимо научиться ею управлять.

4. Что нужно для управляемой термоядерной реакции?

Удержать плазму!

Непонятно? Сейчас поясним.

Во-первых, атомные ядра. В ядерной энергетике используются изотопы - атомы, отличающиеся друг от друга количеством нейтронов и, соответственно, атомной массой. Изотоп водорода дейтерий (D) добывают из воды. Сверхтяжелый водород или тритий (Т) - радиоактивный изотоп водорода, который является побочным продуктом реакций распада, проводимых на обычных ядерных реакторах. Также в термоядерных реакциях используется легкий изотоп водорода - протий: это единственный стабильный элемент, не имеющий нейтронов в ядре. Гелий-3 содержится на Земле в ничтожно малых количествах, зато его очень много в лунном грунте (реголите): в 80-х гг НАСА разрабатывало план гипотетических установок по переработке реголита и выделению ценного изотопа. Зато на нашей планете широко распространен другой изотоп - бор-11. 80% бора на Земле - это необходимый ядерщикам изотоп.

Во-вторых, очень высокая температура. Вещество, участвующее в термоядерной реакции, должно представлять собой практически полностью ионизированную плазму - это газ, в котором отдельно плавают свободные электроны и ионы различных зарядов. Чтобы превратить вещество в плазму, необходима температура 10 7 –10 8 К - это сотни миллионов градусов Цельсия! Такие сверхвысокие температуры можно получить путем создания в плазме электрических разрядов большой мощности.

Однако просто нагреть необходимые химические элементы нельзя. Любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов. Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается: даже под воздействием магнитного поля плазма растекается в пространстве.

5. Какие реакции наиболее перспективны?

В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий (2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B).

Вот как выглядят самые интересные реакции.

1) 2 D+ 3 T -> 4 He (3.5 MeV) + n (14.1 MeV) - реакция дейтерий-тритий.

2) 2 D+ 2 D -> 3 T (1.01 MeV) + p (3.02 MeV) 50%

2 D+ 2 D -> 3 He (0.82 MeV) + n (2.45 MeV) 50% - это так называемое монотопливо из дейтерия.

Реакции 1 и 2 чреваты нейтронным радиоактивным загрязнением. Поэтому наиболее перспективны "безнейтронные" реакции.

3) 2 D+ 3 He -> 4 He (3.6 MeV) + p (14.7 MeV) - дейтерий реагирует с гелием-3. Проблема в том, что гелий-3 чрезвычайно редок. Однако безнейтронный выход делает эту реакцию перспективной.

4) p+ 11 B -> 3 4 He + 8.7 MeV - бор-11 реагирует с протием, в результате получаются альфа-частицы, которые можно поглотить алюминиевой фольгой.

6. Где провести такую реакцию?

Естественным термоядерным реактором является звезда. В ней плазма удерживается под действием гравитации, а излучение поглощается - таким образом, ядро не остывает.

На Земле же термоядерные реакции можно провести лишь в специальных установках.

Импульсные системы. В таких системах дейтерий и тритий облучают сверхмощными лазерными лучи или пучками электронов/ионов. Такое облучение вызывает последовательность термоядерных микровзрывов. Однако такие системы невыгодно использовать в промышленных масштабах: на разгон атомов тратится намного больше энергии, чем получается в результате синтеза, так как не все разгоняемые атомы вступают в реакцию. Поэтому многие страны строят квазистационарные системы.

Квазистационарные системы. В таких реакторах плазма удерживается с помощью магнитного поля при низком давлении и высокой температуре. Существует три типа реакторов, основанных на различных конфигурациях магнитного поля. Это токамаки, стеллараторы (торсатроны) и зеркальные ловушки.

Токамак расшифровывается как "тороидальная камера с магнитными катушками". Это камера в виде "бублика" (тора), на которую намотаны катушки. Главной особенностью токамака является использование переменного электрического тока, который протекает через плазму, нагревает ее и, создавая вокруг себя магнитное поле, удерживает ее.

В стеллараторе (торсатроне) магнитное поле полностью удерживается с помощью магнитных катушек и, в отличие от токамака, может работать постоянно.

В зеркальных (открытых) ловушках используется принцип отражения. Камера с двух сторон закрыта магнитными "пробками", которые отражают плазму, удерживая ее в реакторе.

Долгое время зеркальные ловушки и токамаки боролись за первенство. Изначально концепция ловушки казалась более простой и потому более дешевой. В начале 60-х годов открытые ловушки обильно финансировались, однако нестабильность плазмы и неудачные попытки удержать ее магнитным полем заставляли усложнять эти установки - простые на вид конструкции превратились в адские машины, и добиться стабильного результата не выходило. Поэтому в 80-х годах на первый план вышли токамаки. В 1984 году был запущен европейский токамак JET, стоимость которого составила всего 180 млн долларов и параметры которого позволяли провести термоядерную реакцию. В СССР и Франции проектировали сверхпроводящие токамаки, которые почти не тратили энергию на работу магнитной системы.

7. Кто сейчас учится проводить термоядерные реакции?

Многие страны строят свои термоядерные реакторы. Свои экспериментальные реакторы есть в Казахстане, Китае, США и Японии. Курчатовский институт работает над реактором IGNITOR. Германия запустила термоядерный реактор-стелларатор Wendelstein 7-X.

Наиболее известен международный проект токамака ИТЭР (ITER, Международный экспериментальный термоядерный реактор) в исследовательском центре Кадараш (Франция). Его строительство предполагалось закончить в 2016 году, однако размеры необходимого финансового обеспечения выросли, а сроки экспериментов сдвинулись на 2025 год. В деятельности ИТЭР участвует Евросоюз, США, Китай, Индия, Япония, Южная Корея и Россия . Основную долю в финансировании играет ЕС (45%), остальные участники поставляют высокотехнологичное оборудование. В частности, Россия производит сверхпроводниковые материалы и кабели, радиолампы для нагрева плазмы (гиротроны) и предохранители для сверхпроводящих катушек, а также компоненты для сложнейшей детали реактора - первой стенки, которая должна выдержать электромагнитные силы, нейтронное излучение и излучение плазмы.

8. Почему мы до сих пор не пользуемся термоядерными реакторами?

Современные установки токамак - не термоядерные реакторы, а исследовательские установки, в которых возможно лишь на некоторое время существование и сохранение плазмы. Дело в том, что ученые пока не научились удерживать плазму в реакторе на длительный срок.

На данный момент одним из самых больших достижений в области ядерного синтеза считается успех немецких ученых, которым удалось нагреть водородный газ до 80 миллионов градусов по Цельсию и поддерживать облако плазмы водорода в течение четверти секунды. А в Китае водородную плазму нагрели до 49.999 миллионов градусов и продержали ее 102 секунды. Российским ученым из (Институт ядерной физики имени Г. И. Будкера, Новосибирск) удалось добиться стабильного нагрева плазмы до десяти миллионов градусов Цельсия. Однако недавно американцы предложили способ удержания плазмы в течение 60 лет - и это внушает оптимизм.

Кроме того, ведутся споры относительно рентабельности термоядерного синтеза в промышленности. Неизвестно, покроют ли выгоды от производства электроэнергии затраты на термоядерный синтез. Предлагается экспериментировать с реакциями (например, отказаться от традиционной реакции дейтерий-тритий или монотоплива в пользу других реакций), конструкционными материалами - а то и отказаться от идеи промышленного термоядерного синтеза, используя лишь его для отдельных реакций в реакциях деления. Однако ученые все равно продолжают эксперименты.

9. Безопасны ли термоядерные реакторы?

Относительно. Тритий, который используется в термоядерных реакциях, радиоактивен. Кроме того, нейроны, выделяющиеся в результате синтеза, облучают конструкцию реактора. Сами элементы реактора покрываются радиоактивной пылью из-за воздействия плазмы.

Тем не менее, термоядерный реактор намного безопасней ядерного реактора в радиационном отношении. Радиоактивных веществ в реакторе относительно мало. Кроме того, сама конструкция реактора предполагает отсутствие "дыр", через которые может просочиться радиация. Вакуумная камера реактора должна быть герметичной, иначе реактор просто не сможет работать. При строительстве термоядерных реакторов применяются испытанные ядерной энергетикой материалы, а в помещениях поддерживается пониженное давление.

  • Когда появятся термоядерные электростанции?

    Ученые чаще всего говорят, что-то вроде “через 20 лет мы решим все принципиальные вопросы”. Инженеры из атомной индустрии говорят про вторую половину 21 века. Политики рассуждают про море чистой энергии за копейки, не утруждая себя датами.

  • Как ученые ищут темную материю в недрах Земли

    Сотни миллионов лет назад минералы под земной поверхностью могли сохранять в себе следы загадочного вещества. Осталось только до них добраться. ​Больше двух десятков подземных лабораторий, разбросанных по всему миру, заняты поиском темной материи.

  • Что мешает развитию внутреннего рынка радиационных технологий?

    ​Ученые из институтов СО РАН, побывавшие в странах Юго-Восточной Азии, рассказывали о том, как простые продавцы рыбы на тамошних базарах с помощью нехитрой китайской "технологии" продлевали сроки хранения своего товара.

  • Супер-фабрика С-тау

    ​В программе ОТР "Большая наука. Великое в малом" директор Института ядерной физики имени Г. И. Будкера СО РАН академик Павел Логачев рассказал о том, какую роль в развитии научных исследований играет "Фабрика С-тау" и чем обусловлено ее название.

  • В ходе урока все желающие смогут получить представление о теме «Термоядерная реакция». Вы узнаете, что представляет собой термоядерная реакция, или реакция синтеза. Узнаете, какие элементы и при каких условиях могут вступить в данный вид реакции, и познакомитесь с разработками использования термоядерной реакции в мирных целях.

    Термоядерными реакциями (или просто термоядом) называют реакции слияния легких ядер в одно целое новое ядро, в результате которого выделяется большое количество энергии. Оказывается, большая энергия выделяется не только в результате деления тяжелых ядер, еще больше энергии выделяется, когда легкие ядра сливаются вместе, соединяются. Этот процесс называют синтезом . А сами реакции - термоядерным синтезом, термоядерными реакциями.

    Какие же элементы участвуют в этих реакциях? Это в первую очередь изотопы водорода и изотопы гелия. Для примера можно привести следующую реакцию:

    Два изотопа водорода (дейтерий и тритий), соединяясь вместе, дают ядро гелия, еще образуется нейтрон. Когда протекает такая реакция, выделяется огромная энергия Е = 17,6 МэВ.

    Не забывайте, что это всего лишь на одну реакцию. И еще одна реакция. Два ядра дейтерия, сливаясь вместе, образуют ядро гелия:

    В этом случае выделяется тоже большое количество.

    Обращаю ваше внимание: чтобы такие реакции протекали, нужны определенные условия. В первую очередь нужно сблизить ядра указанных изотопов. Ядра имеют положительный заряд, в данном случае действуют кулоновские силы, которые расталкивают эти заряды. Значит, нужно преодолеть эти кулоновские силы, чтобы приблизить одно ядро к другому. Это возможно только в том случае, если сами ядра обладают большой кинетической энергией, когда скорость у этих ядер довольно велика. Чтобы добиться этого, нужно создать такие условия, когда ядра изотопов будут обладать этой скоростью, а это возможно только при очень высоких температурах. Только так мы сможем разогнать изотопы до скоростей, которые позволят им сблизиться на расстояние приблизительно 10 -14 м.

    Рис. 1. Расстояние, на которое нужно сблизить ядра для наступления термоядерной реакции

    Это расстояние как раз то, с которого начинают действовать ядерные силы. Значение необходимой температуры составляет порядка t ° = 10 7 - 10 8 ° C . Достигнуть такой температуры можно, когда произведен ядерный взрыв. Таким образом, чтобы произвести термоядерную реакцию, мы сначала должны произвести реакцию деления тяжелых ядер. Именно в этом случае мы добьемся высокой температуры, а уже потом данная температура даст возможность сблизить ядра изотопов до расстояния, когда они могут соединиться. Как вы понимаете, именно в этом заложен принцип так называемой водородной бомбы.

    Рис. 2. Взрыв водородной бомбы

    Нас, как мирных людей, интересует в первую очередь использование термоядерной реакции в мирных целях для создания тех же самых электростанций, но уже новейшего типа.

    В настоящее время ведутся разработки по тому, как создать управляемый термоядерный синтез. Для этого используются различные методы, один из них: использование лазеров для получения высоких энергий и температур. С помощью лазеров их разгоняют до высоких скоростей, и в этом случае может протекать термоядерная реакция.

    В результате термоядерной реакции выделяется огромное количество тепла, то место в реакторе, в котором будут находиться взаимодействующие друг с другом изотопы, нужно хорошо изолировать, чтобы вещество, которое будет находиться при высокой температуре, не взаимодействовало с окружающей средой, со стенками того объекта, где оно находится. Для такой изоляции используется магнитное поле. При высокой температуре ядра, электроны, которые находятся вместе, представляют собой новый вид материи - плазму. Плазма - это частично или полностью ионизированный газ, а раз газ ионизирован, то он чувствителен к магнитному полю. Плазма - электропроводящая, при помощи магнитных полей можно придавать ей определенную форму и удерживать в определенном объеме. Тем не менее, техническое решение управления термоядерной реакцией остается пока неразрешенным.

    Рис. 3. ТОКАМАК - тороидальная установка для магнитного удержания плазмы

    В заключение хотелось бы еще отметить: термоядерные реакции играют важную роль в эволюции нашей вселенной. В первую очередь отметим, что термоядерные реакции протекают на Солнце. Можно сказать, что именно энергия термоядерных реакций - это та энергия, которая сформировала нынешний облик нашей вселенной.

    Список дополнительной литературы

    1. Бронштейн М.П. Атомы и электроны. «Библиотечка “Квант”». Вып. 1. М.: Наука, 1980

    2. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. М.: Просвещение

    3. Китайгородский А.И. Физика для всех. Книга 4. Фотоны и ядра. М.: Наука

    4. Мякишев Г.Я., Синяков А.З. Физика. Оптика. Квантовая физика. 11 класс: учебник для углублённого изучения физики. М.: Дрофа

    Задание к уроку .

    1. В результате термоядерной реакции соединения двух протонов образуется дейтрон и нейтрино. Какая ещё появляется частица?

    2. Найти частоту γ -излучения, образующегося при термоядерной реакции:

    Если α -частица приобретает энергию 19.7 МэВ

    Ядерные реакции между легкими атомными ядрами, протекающие при очень высоких температурах (10 7 10 8 К), называются термоядерными реакциями. В этих реакциях ядрам, испытывающим взаимное кулоновское отталкивание, удается, преодолев соответствующий электростатический барьер (рис. 1), сблизиться на расстояние порядка радиуса действия ядерных сил притяжения и, провалившись в образуемую ими глубокую потенциальную яму, совершить ту или иную экзоэнергетическую (т. е. сопровождающуюся выделением энергии) ядерную перестройку. Под «выделением энергии» подразумевается выделение в продуктах реакции избыточной кинетической энергии, равной увеличению суммарной энергии связи. Таким образом, относительно рыхлые ядра перестраиваются в более прочно связанные, а поскольку ядра с наибольшей энергией связи на один нуклон находятся в средней части периодической системы Менделеева, то наиболее типичным механизмом экзоэнергетической реакции является слияние (синтез) легчайших ядер в более тяжелые. Хотя существуют и экзоэнергетические реакции деления легких ядер. Благодаря особой прочности ядра 4 He возможна, например, реакция

    Описанные выше процессы называются реакциями ядерного синтеза (ЯС).

    По механизму преодоления кулоновского барьера реакции ЯС можно разделить на два основных класса: А – реакции при неискаженном барьере, требующие для своего протекания достаточно большой относительной энергии сталкивающихся ядер, которая сообщается им в результате ускорения или сильного разогрева; Б – реакции так называемого холодного синтеза, которые становятся возможными в результате сильного искажения самого барьера – прежде всего, его сужения, благодаря «срезанию» внешней, наиболее широкой части.

    Реакции класса А могут реализоваться либо в некотором ускорителе, либо в высокотемпературной плазме звездных недр, ядерного взрыва, мощного газового разряда или в плазме вещества, разогретого гигантским импульсом лазерного излучения, бомбардировкой интенсивным пучком частиц и т. п.

    Реакции типа Б являются следствием таких явлений как:

    Непреходящий интерес к реакциям ЯС, и прежде всего к термоядерным реакциям, связан с тем, что они являются:

    – главным источником Солнца и звезд, а также механизмом дозвездных и звездных процессов синтеза атомных ядер химических элементов;

    – одной из физических основ ядерного взрыва и (термо-)ядерного оружия;

    – основой управляемого термоядерного синтеза (УТС) – экономически и экологически перспективного направления энергетики будущего.

    В таблице 1 приведен ряд реакций, представляющих интерес для УТС.

    Таблица 1

    Экзоэнергетические реакции между легкими ядрами

    Энерговыделение,

    (в обл. энерг.

    Энергия налетающих частиц,

    соотв. , МэВ

    0,16 при 2 МэВ

    0,69 при 1,2 Мэв

    P протон, d – дейтрон (ядро дейтерия 2 H), t – тритон (ядро трития 3 H), n – нейтрон, e + - позитрон, ν – ниттрино, γ – фотон. Распределение энергии между продуктами реакции обычно обратно пропорционально их массам.

    При анализе результатов надо иметь в виду, что сечение σ любой из реакций есть, грубо говоря, произведение сечения прохождения сквозь кулоновский барьер и вероятности последующего ядерного превращения. Первый, «кулоновский», сомножитель по своей природе универсален для всех термоядерных реакций. Высота барьера E δ

    где и– заряды ядер, аR – сумма их «радиусов». Даже для комбинаций ядер с наименьшими , например, составляет200 кэВ. Средняя же энергия частиц для плазмы звездных недр или современных направлений УТС, где наиболее типичны температуры (10 7 10 8) К, составляет около (110) кэВ. Следовательно, преодоление потенциального барьера носит, как правило, характер туннельного, притом глубоко подбарьерного, прохождения. Вероятность туннельного прохождения, когда относительная энергия E сталкивающихся ядер намного меньше высоты барьера (), может быть описана предельной формой известной экспоненты, а именно:

    где – относительная скорость ядер,

    –их приведенная масса.

    Второй, «ядерный», сомножитель, определяющий основной порядок сечения термоядерной реакции, специфичен для каждой конкретной реакции. Так, для реакций с образованием наиболее сильно связанного ядра 4 He он велик и обычно резонансно зависит от энергии. Это относится, например, к важнейшим для УТС реакциям 7 и 10 и к одной из гипотетически перспективных «чистых», т. е. без нейтронных реакций – реакции 20. Для реакций, обусловленных слабым взаимодействием, он чрезвычайно мал. Так, например, фундаментальная для энерговыделения Солнца реакция 1 непосредственно (в лаборатории) вообще не наблюдалась.

    Интенсивность термоядерной реакции зависит от плотности плазмы и от температуры. Зависимость от плотности определяется тем, что реакции происходят в результате парных столкновений между ядрами. Число реакций в единице объема в единицу времени равно , гдеn 1 , n 2 – концентрации ядер сортов 1 и 2; угловыми скобками обозначено усреднение по распределению относительных скоростей , в дальнейшем принимаемому максвелловским. В области «не очень высоких» температурT ≤ (10 7 ÷10 8)К и в отсутствие резонанса может быть приближенно выражено в форме, универсальной для всех нерезонансных реакций:

    где – постоянная, характерная для данной реакции. Эта формула справедлива лишь при больших (1) значениях показателя экспоненты. Полученная температурная зависимость сама по себе достаточно сильная, но все же не столь резка, как например, типичная температурная зависимостьскорости химических реакций.

    2024 english-speak.ru. Изучение английского языка.