Что математическое ожидание дискретной случайной величины. Математическое ожидание и дисперсия случайной величины. Практическая реализация математического ожидания

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Наиболее полной характеристикой случайной величины является ее закон распределения. Однако он не всегда известен и в этих случаях приходится довольствоваться меньшими сведениями. К таким сведениям могут относиться: диапазон изменения случайной величины, наибольшее (наименьшее) ее значение, некоторые другие характеристики, которые описывают случайную величину некоторым суммарным способом. Все эти величины называют числовыми характеристиками случайной величины. Обычно это некоторые неслучайные числа, так или иначе характеризующие случайную величину. Основное назначение числовых характеристик – в сжатой форме выразить наиболее существенные особенности того или иного распределения.

Простейшей числовой характеристикой случайной величины Х называется ее математическое ожидание :

М(Х)=х 1 р 1 +х 2 р 2 +…+x n p n . (1.3.1)

Здесь х 1 , х 2 , …, х n – возможные значения случайной величины Х , а р 1 , р 2 , …, р n – их вероятности.

Пример 1. Найти математическое ожидание случайной величины, если известен ее закон распределения:

Решение . М(Х)=2×0,3+3×0,1+5×0,6=3,9 .

Пример 2 . Найти математическое ожидание числа появлений события А в одном испытании, если вероятность этого события равна р .

Решение . Если Х – число появлений события А в одном испытании, то, очевидно, закон распределения Х имеет вид:

Тогда М(Х)=0×(1–р)+1×р=р .

Итак: математическое ожидание числа появлений события в одном испытании равно его вероятности.

Вероятностный смысл математического ожидания

Пусть произведено n испытаний, в которых случайная величина Х приняла m 1 раз значение х 1 , m 2 раз значение х 2 , …, m k раз значение х k . Тогда сумма всех значений в n испытаниях равна:

х 1 m 1 +x 2 m 2 +…+x k m k .

Найдем среднее арифметическое всех значений, принятых случайной величиной:

Значения – относительные частоты появления значений х i (i=1, …, k) . Если n достаточно велико (n®¥) , то эти частоты приблизительно равны вероятностям: . Но тогда

=x 1 p 1 +x 2 p 2 +…+x k p k =M(X).

Таким образом, математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины. В этом состоит вероятностный смысл математического ожидания.

Свойства математического ожидания

1. Математическое ожидание постоянной равно самой постоянной.

М(С)=С×1=С .

2. Постоянный множитель можно выносить за знак математического ожидания

М(СХ)=С×М(Х) .

Доказательство . Пусть закон распределения Х задан таблицей:

Тогда случайная величина СХ принимает значения Сх 1 , Сх 2 , …, Сх n с теми же вероятностями , т.е. закон распределения СХ имеет вид:

М(СХ)=Сх 1 ×р 1 +Сх 2 ×р 2 +…+Сх n ×p n =

=С(х 1 р 1 +х 2 р 2 +…+х n p n)=СМ(Х).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

М(XY)=M(X)×M(Y) .

Это утверждение дается без доказательства (доказательство основано на определении математического ожидания).

Следствие . Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

В частности, для трех независимых случайных величин

М(XYZ)=M(X)×M(Y)×M(Z) .

Пример . Найти математическое ожидание произведения числа очков, которые могут выпасть при бросании двух игральных костей.

Решение . Пусть Х i – число очков на i -й кости. Это могут быть числа 1 , 2 , …, 6 с вероятностями . Тогда

М(Х i)=1× +2× +…+6× = (1+2+…+6)= × ×6= .

Пусть Х=Х 1 ×Х 2 . Тогда

М(Х)=М(Х 1)×М(Х 2)= =12,25 .

4. Математическое ожидание суммы двух случайных величин (независимых или зависимых) равно сумме математических ожиданий слагаемых:

М(Х+Y)=M(X)+M(Y) .

Это свойство обобщается на случай произвольного количества слагаемых.

Пример . Производится 3 выстрела с вероятностями попадания в цель, равными р 1 =0,4 , р 2 =0,3 и р 3 =0,6 . Найти математическое ожидание общего числа попаданий.

Решение . Пусть Х i – число попаданий при i -м выстреле. Тогда

М(Х i)=1×p i +0×(1–p i)=p i .

Таким образом,

M(X 1 +X 2 +X 3)= =0,4+0,3+0,6=1,3 .

1. Математическое ожидание постоянной величины равно самой постоянной М(С)=С .
2. Постоянный множитель можно выносить за знак математического ожидания: M(CX)=CM(X)
3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий: M(XY)=M(X) M(Y).
4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых: M(X+Y)=M(X)+M(Y).

Теорема. Математическое ожидание М(х) числа появлений событий А в n независимых испытаниях равно произведению этих испытаний на вероятность появления событий в каждом испытании: M(x) = np.

Пусть Х - случайная величина и М(Х) – ее математическое ожидание. Рассмотрим в качестве новой случайной величины разность Х - М(Х).

Отклонением называют разность между случайной величиной и ее математическим ожиданием.

Отклонение имеет следующий закон распределения:

Решение: Найдем математическое ожидание:
2 =(1-2.3) 2 =1.69
2 =(2-2.3) 2 =0.09
2 =(5-2.3) 2 =7.29

Напишем закон распределения квадрата отклонения:

Решение: Найдем математическое ожидание М(х): M(x)=2 0.1+3 0.6+5 0.3=3.5

Напишем закон распределения случайной величины X 2

X 2
P 0.1 0.6 0.3

Найдем математическое ожидание M(x 2):M(x 2) = 4 0.1+9 0.6+25 0.3=13.5

Искомая дисперсия D(x)=M(x 2)- 2 =13.3-(3.5) 2 =1.05

Свойства дисперсии:

1. Дисперсия постоянной величины С равна нулю: D(C)=0
2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. D(Cx)=C 2 D(x)
3. Дисперсия суммы независимых случайных величин равна сумме дисперсий этих величин. D(X 1 +X 2 +...+X n)=D(X 1)+D(X 2)+...+D(X n)
4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании D(X)=npq

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратичное отклонение.

Средним квадратичным отклонением случайной величины Х называют квадратный корень из дисперсии:

σ(X) = √D(X) (4)

Пример. Случайная величина Х задана законом распределения

X
P 0.1 0.4 0.5

Найти среднее квадратичное отклонение σ(x)

Решение: Найдем математическое ожидание Х: M(x)=2 0.1+3 0.4+10 0.5=6.4
Найдем математическое ожидание X 2: M(x 2)=2 2 0.1+3 2 0.4+10 2 0.5=54
Найдем дисперсию: D(x)=M(x 2)=M(x 2)- 2 =54-6.4 2 =13.04
Искомое среднее квадратичное отклонение σ(X)=√D(X)=√13.04≈3.61

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратичных отклонений этих величин:

Пример. На полке из 6 книг 3 книги по математике и 3 по физике. Выбирают наудачу три книги. Найти закон распределения числа книг по математике среди выбранных книг. Найти математическое ожидание и дисперсию этой случайной величины.

D(X)= М(Х 2)- М(Х) 2 = 2,7 – 1,5 2 = 0,45

Математическим ожиданием (средним значением) случайной величины X , заданной на дискретном вероятностном пространстве, называется число m =M[X]=∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

2024 english-speak.ru. Изучение английского языка.