Ламинарный поток воды. Понятие возмущения скорости. Виды режимов течения

) перемещается как бы слоями, параллельными направлению течения. Л. т. наблюдается или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, образующемся вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. в нек-рый момент переходит в . При этом существенно изменяются все его св-ва, в частности структура потока, профиль скоростей, закон сопротивления. Режим течения жидкости характеризуется Рейнольдса числом Re. Когда значение Re меньше критич. числа Reкр, имеет место Л. т. жидкости; если Re > Reкр, течение становится турбулентным. Значение Reкр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах ReKp »2300 (если характерной скоростью считать среднюю по сечению , а характерным размером - диаметр трубы). При Reкр

Физический энциклопедический словарь. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

ЛАМИНАРНОЕ ТЕЧЕНИЕ

(от лат. lamina - пластинка) - упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число R е Кр, наз. нижним критич. числом Рейнольдса, что при любом Re Л. т. является устойчивым и практически осуществляется; значение R е кр обычно определяется экспериментально. При R е>R е кр, принимая особые для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение. Теоретически Л. т. изучаются с помощью Навье - Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.

Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения R е Кр 2200, где Re= ( - средняя по расходу скорость жидкости, d - диаметр трубы, - кинематич. коэф. вязкости, - динамич. коэф. вязкости, - плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (=10 -6 м 2 /с при 20° С) устойчивое Л. т. с =1 м/с возможно лишь в трубках диаметром не более 2,2 мм.

При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону -(1 - -r 2 / а 2), где а - радиус трубы, r - расстояние от оси, - осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону где = - напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P 1 -P 2 где p 1 и р 2 - давления в к.-н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, - коэф. сопротивления, зависящий от для Л. т. . Секундный жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка

Распределение скоростей по сечению трубы: а - при ламинарном течении; б - при турбулентном течении.

Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6 )и закон сопротивления, т. е. зависимость от Re (см. Гидродинамическое сопротивление).

Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой), при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Тар г С. М., Основные задачи теории ламинарных течений, М.- Л., 1951; Слезкин Н. А., Динамика вязкой несжимаемой жидкости, М., 1955, гл. 4 - 11. С. М. Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "ЛАМИНАРНОЕ ТЕЧЕНИЕ" в других словарях:

    Современная энциклопедия

    Ламинарное течение - (от латинского lamina пластинка, полоска), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения. Ламинарное течение наблюдается или при течениях, происходящих с… … Иллюстрированный энциклопедический словарь

    - (от лат. lamina пластинка полоска), течение, при котором жидкость (или газ) перемещается слоями без перемешивания. Существование ламинарного течения возможно только до определенного, т. н. критического, значения Рейнольдса числа Reкр. При Re,… … Большой Энциклопедический словарь

    - (от лат. lamina пластинка, полоска * a. laminar flow; н. Laminarstromung, laminare Stromung; ф. ecoulement laminaire, courant laminaire; и. corriente laminar, torrente laminar) упорядоченное течение жидкости или газа, при к ром жидкость… … Геологическая энциклопедия

    - (от латинского lamina пластинка, полоска) вязкой жидкости течение, в котором частицы среды движутся упорядоченно по слоям и процессы переноса массы, импульса и энергии между слоями происходят на молекулярном уровне. Типичным примером Л. т.… … Энциклопедия техники

    ЛАМИНАРНОЕ ТЕЧЕНИЕ, спокойное течение жидкости или газа без перемешивания. Жидкость или газ перемещаются слоями, которые скользят друг относительно друга. По мере того, как увеличивается скорость движения слоев, или по мере уменьшения вязкости… … Научно-технический энциклопедический словарь - движение вязкой жидкости (или газа), при котором жидкость (или газ) перемещается отдельными параллельными слоями без завихрений и перемешивания друг с другом (в отличие от турбулентного (см.)). Вследствие этого (напр. в трубе) эти слои имеют… … Большая политехническая энциклопедия

    ламинарное течение - Спокойное, упорядоченное движение воды или воздуха, перемещающихся параллельно направлению течения, в отличие от турбулентного течения … Словарь по географии

Ламинарным течением жидкости называется слоистое течение без перемешивания частиц жидкости и без пульсаций скоростей и давления.

Закон распределения скоростей по сечению круглой трубы при ламинарном режиме движения, установленный английским физиком Дж. Стоксом, имеет вид

,

где
,

- потери напора по длине.

При
, т.е. на оси трубы
,

.

При ламинарном движении эпюра скоростей по поперечному сечению трубы будет иметь форму квадратичной параболы.

Турбулентный Режим движения жидкости

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений.

В результате наличия вихрей и интенсивного перемешивания частиц жидкости в любой точке турбулентного потока в данный момент времени имеет место своя по значению и направлению мгновенная местная скорость u , а траектория частиц, проходящих через эту точку, имеет различный вид (занимают разное положение в пространстве и имеют различную форму). Такое колебание во времени мгновенной местной скорости называется пульсацией скорости . То же происходит и с давлением. Таким образом, турбулентное движение является неустановившимся.

Усредненная местная скорость ū – фиктивной средней скорости в данной точке потока на достаточно длительный промежуток времени, которая несмотря на значительные колебания мгновенных скоростей, остается практически постоянной по значению и параллельной оси потоков

.

По Прандтлю турбулентный поток состоит из двух областей:ламинарного подслоя и турбулентного ядра потока, между которыми существует еще одна область – переходной слой . Совокупность ламинарного подслоя и переходного слоя в гидродинамике называют обычно пограничным слоем .

Ламинарный подслой, расположенный непосредственно у стенок трубы, имеет весьма малую толщину δ , которая может быть определена по формуле

.

В переходном слое ламинарное течение уже нарушается поперечным перемещением частиц, причем чем дальше расположена точка от стенки трубы, тем выше интенсивность перемешивания частиц. Толщина этого слоя также невелика, но четкую его границу установить трудно.

Основную часть живого сечения потока занимает ядро потока, в котором наблюдается интенсивное перемешивание частиц, поэтому именно оно характеризует турбулентное движение потока в целом.

ПОНЯТИЕ О ГИДРАВЛИЧЕСКИ ГЛАДКИХ И ШЕРОХОВАТЫХ ТРУБАХ

Поверхность стенок труб, каналов, лотков имеют ту или иную шероховатость. Обозначим высоту выступов шероховатости буквой Δ. Величину Δ называютабсолютной шероховатостью , а ее отношение к диаметру трубы (Δ/d) - относительной шероховатостью ; величина обратная относительной шероховатости, носит название относительной гладкости (d/Δ).

В зависимости от соотношения толщены ламинарного подслоя δ и высоты выступов шероховатости Δ различают гидравлически гладкие и шероховатые трубы. Если ламинарный подслой полностью покрывает все выступы на стенках трубы, т.е. δ>Δ, трубы считаются гидравлически гладкими. При δ<Δ трубы считаются гидравлически шероховатыми. Так как значение δ зависит от Re, то одна и та же труба может быть в одних и тех же условиях гидравлически гладкой (при малых Re), а в других – шероховатой (при больших Re).

Лекция №9

ГИДРАВЛИЧЕСКИЕ ПОТЕРИ

ОБЩИЕ СВЕДЕНИЯ.

При движении потока реальной жидкости происходят потери напора, так как часть удельной энергии потока затрачивается на преодоление различных гидравлических сопротивлений. Количественное определение потерь напора h п является одной из важнейших задач гидродинамики, без решения которой не возможно практическое использование уравнения Бернулли:

где α – коэффициент кинетической энергии, равный для турбулентного потока 1,13, а для ламинарного - 2; v -средняя скорость потока; h - уменьшение удельной механической энергии потока на участке между сечениями 1 и 2, проходящее в результате сил внутреннего трения.

Потери удельной энергии (напора), или, как их часто называют, гидравлические потери , зависят от формы, размеров русла, скорости течения и вязкости жидкости, а иногда и от абсолютного давления в ней. Вязкость жидкости, хотя и является первопричиной всех гидравлических потерь, но далеко не всегда оказывает существенное влияние на их величину.

Как показывают опыты, во многих, но не во всех случаях гидравлические потери приблизительно пропорциональны скорости течения жидкости во второй степени, поэтому в гидравлике принят следующий общий способ выражения гидравлических потерь полного напора в линейных единицах:

,

или в единицах давления

.

Такое выражение удобно тем, что включает в себя безразмерный коэффициент пропорциональности ζ называемый коэффициентом потерь, или коэффициентом сопротивления, значение которого для данного русла в первом грубом приближении постоянно.

Коэффициент потерь ζ, таким образом, есть отношение потерянного напора к скоростному напору.

Гидравлические потери обычно разделяют на местные потери и потери на трение по длине.

Местные потери энергии обусловлены так называемыми местными гидравлическими сопротивлениями, т.е. местными изменениями формы и размера русла, вызывающими деформацию потока. При протекании жидкости через местные сопротивления изменяется ее скорость и обычно возникают крупные вихри. Последние образуются за местом отрыва потока от стенок и представляют собой области, в которых частицы жидкости движутся в основном по замкнутым кривым или близким к ним траекториям.

Местные потери напора определяются по формуле Вейсбаха следующим образом:

,

или в единицах давления

,

где v - средняя по сечению скорость в трубе, в которой установлено данное местное сопротивление.

Если же диаметр трубы и, следовательно, скорость в ней изменяются по длине, то за расчетную скорость удобнее принимать бόльшую из скоростей, т.е. ту, которая соответствует меньшему диаметру трубы.

Каждое местное сопротивление характеризуется своим значением коэффициента сопротивления ζ , которое во многих случаях приближенно можно считать постоянным для данной формы местного сопротивления.

Потери на трение по длине, - это потери энергии, которые в чистом виде возникают в прямых трубах постоянного сечения, т.е. при равномерном течении, и возрастают пропорционально длине трубы. Рассматриваемые потери обусловлены внутренним в жидкости, а потому имеют место не только в шероховатых, но и гладких трубах.

Потери напора на трение можно выразить по общей формуле для гидравлических потерь, т.е.

,

однако удобнее коэффициент ζ связать с относительной длинной трубы l / d .

Возьмем участок круглой трубы длиной, равной ее диаметру, и обозначим его коэффициент потерь через λ . Тогда для всей трубы длинной l и диаметром d . коэффициент потерь будет в l / d раз больше:

.

Тогда потери напора на трение определяются по формуле Вейсбаха-Дарси:

,

или в единицах давления

.

Безразмерный коэффициент λ называют коэффициентом потерь на трение по длине, или коэффициентом Дарси. Его можно рассматривать как коэффициент пропорциональности между потерей напора на трение, и произведением относительной длины трубы на скоростной напор.

Нетрудно выяснить физический смысл коэффициентаλ , если рассмотреть условие равномерного движения в трубе цилиндрического объема длиной l и диаметром d , т.е. равенство нулю суммы сил, действующих на объем: сил давления и сил трения. Это равенство имеет вид

,

где - напряжение трения на стенке трубы.

Если учесть
, томожно получить

,

т.е. коэффициент λ есть величина, пропорциональная отношению напряжения трения на стенке трубы к динамическому давлению, определенному по средней скорости.

Ввиду постоянства объемного расхода несжимаемой жидкости вдоль трубы постоянного сечения скорость и удельная кинетическая энергия также остаются постоянными, несмотря на наличие гидравлических сопротивлений и потерь напора. Потери напора в этом случае определяются разностью показаний двух пьезометров.

Лекция №10

движения жидкости

Многочисленные экспериментальные исследования движущихся жидкостей позволили установить, что существуют два режима движения жидкостей. Наиболее полные лабораторные исследования режимов движения жидкостей провел английский физик О. Рейнольдс на установке (рис. 10.1), состоящей из резервуара с водой 1 ,

Рис. 10.1. Схема установки для демонстрации режимов движения жидкости

стеклянной трубки 7 с краном 8 и сосуда 4 с водным раствором краски, которая может подаваться тонкой струйкой внутрь стеклянной трубки 6 при открытии крана 5 . Заполнение сосуда 1 осуществляется из крана 2 с вентилем 3 .

При малых скоростях течения воды краска практически не перемешивается с ней и видны слоистый характер течения жидкости и отсутствие перемешивания.

Манометр, подсоединенный к трубе 7 (на схеме он не приведен), показывает неизменность давления p и скорости v, отсутствие колебаний (пульсаций). Это так называемоеламинарное течение (от латинского слова lamina -лента, полоска), т.е. ленточное, слоистое.

При постепенном увеличении скорости течения воды в трубе путем открытия крана 8 картина течения вначале не меняется, а затем при определенной скорости наступает быстрое ее изменение. Струйка краски начинает перемешиваться с потоком воды, становятся заметными вихреобразования и вращательное движение жидкости, причем происходят непрерывные пульсации давления и скоростей в потоке воды. Течение становится, как его принято называть,турбулентным (от латинского слова turbulentus – беспорядочный).

Если уменьшить скорость потока, то восстановится ламинарное течение.

Итак,ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсации скорости и давления. При таком течении все линии тока жидкости вполне определяются формой русла. При ламинарном течении в трубе все линии тока направлены параллельно оси трубы. Ламинарное течение является упорядоченным при постоянном напоре строго установившегося течения.Ламинарный режимнаблюдается преимущественно при движении вязких жидкостей (нефти, смазочных масел и т.п.), и менее вязких жидкостей при их течении с небольшими скоростями.

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсацией скоростей и давления. Движение отдельных частиц оказывается хаотичным, беспорядочным. Наряду с осевым перемещением наблюдается вращательное и поперечное перемещение отдельных объемов жидкости. Этим и объясняются пульсации скоростей и давления. Рейнольдс установил, что основными факторами, определяющими характер движения жидкости, являются средняя скорость движения жидкости v, диаметр трубопровода D и кинематическая вязкость жидкости n. Учитывая влияние перечисленных факторов, Рейнольдс предложил цифровой безразмерный критерий определения режима движения жидкости

Re= vD /n,

где Re – безразмерное число Рейнольдса или критерий Рейнольдса.

Зная параметры, входящие в правую часть этой формулы, можно расчетным путем найти значение Re.

Скорость , при которой для данной жидкости и определенного диаметра трубопровода происходит смена режимов движения, называется критической .

Как показывает опыт, для труб круглого сечения критическое значение числа Рейнольдса, при котором начинается турбулентный режим движения жидкости, равно 2320. Таким образом, критерий Рейнольдса позволяет судить о режиме движения жидкости в трубе.При Re < 2320 - движение ламинарное, а при Re > 2320 - движение турбулентное.

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Найти

Что значит "ламинарное течение"

Энциклопедический словарь, 1998 г.

ламинарное течение

ЛАМИНАРНОЕ ТЕЧЕНИЕ (от лат. lamina - пластинка, полоска) течение, при котором жидкость (или газ) перемещается слоями без перемешивания. Существование ламинарного течения возможно только до определенного, т.н. критического, значения Рейнольдса числа Reкр. При Re, больших критического, ламинарное течение переходит в турбулентное.

Ламинарное течение

(от лат. lamina ≈ пластинка), упорядоченное течение жидкости или газа, при котором жидкость (газ) перемещается как бы слоями, параллельными направлению течения (рис .). Л. т. наблюдаются или у очень вязких жидкостей, или при течениях, происходящих с достаточно малыми скоростями, а также при медленном обтекании жидкостью тел малых размеров. В частности, Л. т. имеют место в узких (капиллярных) трубках, в слое смазки в подшипниках, в тонком пограничном слое, который образуется вблизи поверхности тел при обтекании их жидкостью или газом, и др. С увеличением скорости движения данной жидкости Л. т. может в некоторый момент перейти в неупорядоченное турбулентное течение . При этом резко изменяется сила сопротивления движению. Режим течения жидкости характеризуется т. н. Рейнольдса числом Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место Л. т. жидкости; если Re > Rekp, режим течения может стать турбулентным. Значение Рекр зависит от вида рассматриваемого течения. Так, для течения в круглых трубах Рекр » 2200 (если характерной скоростью считать среднюю по сечению скорость, а характерным размером ≈ диаметр трубы). Следовательно, при Rekp < 2200 течение жидкости в трубе будет Л. т. Расход жидкости при Л. т. в трубе определяется Пуазёйля законом.

Как показывают опыты, возможны два режима течения жидкостей и газов: ламинарный и турбулентный.

Ламинарным называется сложное течение без перемешивания частиц жидкости и без пульсаций скоростей и давлений. При ламинарном движении жидкости в прямой трубе постоянного поперечного сечения все линии тока направлены параллельно оси труб, отсутствуют поперечные перемещения жидкости. Однако, ламинарное движение нельзя считать безвихревым, так как в нем хотя и нет видимых вихрей, но одновременно с поступательным движением имеет место упорядоченное вращательное движение отдельных частиц жидкости вокруг своих мгновенных центров с некоторыми угловыми скоростями.

Турбулентным называется течение, cопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении наряду с основным продольным перемещением жидкости происходят поперечные перемещения и вращательное движение отдельных объемов жидкости.

Изменение режима течения происходит при определенном соотношении между скоростью V, диаметром d, и вязкостью υ. Эти три фактора входят в формулу безразмерного критерия Рейнольдса R e = V d /υ, поэтому вполне закономерно, что именно число R e , является критерием, определяющим режим течения в трубах.

Число R e , при котором ламинарное движение приходит в турбулентное, называется критическим Reкр.

Как показывают опыты, для труб круглого сечения Rекр = 2300, то есть при Re < Reкр течение является ламинарным, а при Rе > Reкр - турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при Re = 4000, а при Re = 2300 - 4000 имеет место переходная критическая область.

Смена режима течения при достижении Re кр обусловлена тем, что одно течение теряет устойчивость, а другое - приобретает.

Рассмотрим более подробно ламинарное течение.

Одним из наиболее простых видов движения вязкой жидкости является ламинарное движение в цилиндрической трубе, а в особенности его частный случай - установившееся равномерное движение. Теория ламинарного движения жидкости основывается на законе трения Ньютона . Это трение между слоями движущейся жидкости является единственным источником потерь энергии.

Рассмотрим установленное ламинарное течение жидкости в прямой трубе с d = 2 r 0

Чтобы исключить влияние силы тяжести и этим упростить вывод допустим, что труба расположена горизонтально.

Пусть в сечении 1-1 давление равно P 1 а в сечении 2-2 - P 2.

Ввиду постоянства диаметра трубы V = const, £ = const, тогда уравнение Бернулли для выбранных сечений примет вид:

Отсюда , что и будут показывать пьезометры, установленные в сечениях.


В потоке жидкости выделим цилиндрический объем.

Запишем уравнение равномерного движения выделенного объема жидкости, то есть равенство 0 суммы сил, действующих на объем.

Отсюда следует, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в зависимости от радиуса.

Если выразить касательное напряжение t по закону Ньютона, то будем иметь

Знак минус обусловлен тем, что направление отсчета r (от оси к стенке противоположного направления отсчета y (от стенки)

И подставить значение t в предыдущее уравнение, то получим

Отсюда найдем приращение скорости.

Выполнив интегрирование получим.

Постоянную интегрирования найдем из условия при r = r 0; V = 0

Скорость по окружности радиусом r равна

Это выражение является законом распределения скорости по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, является параболой второй степени. Максимальная скорость, имеющая место в центре сечения при r = 0 равна

Применим полученный закон распределения скоростей для расчета расхода.

Площадку dS целесообразно взять в виде кольца радиусом r и шириной dr

Тогда

После интегрирования по всей площади поперечного сечения, то есть от r = 0, до r = r 0

Для получения закона сопротивления выразим; (через предыдущую формулу расхода)

(

µ=υρ r 0 = d/2 γ = ρg. Тогда получим закон Пуарейля;

2024 english-speak.ru. Изучение английского языка.