Теоретическая механика. Изменение момента количества движения Теорема изменения количества движения материальной точки следствие

Общие теоремы динамики системы тел. Теоремы о движении центра масс, об изменении количества движения, об изменении главного момента количества движения, об изменении кинетической энергии. Принципы Даламбера, и возможных перемещений. Общее уравнение динамики. Уравнения Лагранжа.

Содержание

Работа, которую совершает сила , равна скалярному произведению векторов силы и бесконечно малому перемещению точки ее приложения :
,
то есть произведению модулей векторов F и ds на косинус угла между ними.

Работа, которую совершает момент сил , равна скалярному произведению векторов момента и бесконечно малого угла поворота :
.

Принцип Даламбера

Суть принципа Даламбера состоит в том, чтобы задачи динамики свести к задачам статики. Для этого предполагают (или это заранее известно), что тела системы имеют определенные (угловые) ускорения. Далее вводят силы инерции и (или) моменты сил инерции, которые равны по величине и обратные по направлению силам и моментам сил, которые по законам механики создавали бы заданные ускорения или угловые ускорения

Рассмотрим пример. Путь тело совершает поступательное движение и на него действуют внешние силы . Далее мы предполагаем, что эти силы создают ускорение центра масс системы . По теореме о движении центра масс, центр масс тела имел бы такое же ускорение, если бы на тело действовала сила . Далее мы вводим силу инерции:
.
После этого задача динамики:
.
;
.

Для вращательного движения поступают аналогичным образом. Пусть тело вращается вокруг оси z и на него действуют внешние моменты сил M e zk . Мы предполагаем, что эти моменты создают угловое ускорение ε z . Далее мы вводим момент сил инерции M И = - J z ε z . После этого задача динамики:
.
Превращается в задачу статики:
;
.

Принцип возможных перемещений

Принцип возможных перемещений применяется для решений задач статики. В некоторых задачах, он дает более короткое решение, чем составление уравнений равновесия. Особенно это касается систем со связями (например, системы тел, соединенные нитями и блоками), состоящих из множества тел

Принцип возможных перемещений .
Для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении системы была равна нулю.

Возможное перемещение системы - это малое перемещение, при котором не нарушаются связи, наложенные на систему.

Идеальные связи - это связи, которые не совершают работы при перемещении системы. Точнее, сумма работ, совершаемая самими связями при перемещении системы равна нулю.

Общее уравнение динамики (принцип Даламбера - Лагранжа)

Принцип Даламбера - Лагранжа - это объединение принцип Даламбера с принципом возможных перемещений. То есть, при решении задачи динамики, мы вводим силы инерции и сводим задачу к задаче статики, которую решаем с помощью принципа возможных перемещений.

Принцип Даламбера - Лагранжа .
При движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы равна нулю:
.
Это уравнение называют общим уравнением динамики .

Уравнения Лагранжа

Обобщенные координаты q 1 , q 2 , ..., q n - это совокупность n величин, которые однозначно определяют положение системы.

Число обобщенных координат n совпадает с числом степеней свободы системы.

Обобщенные скорости - это производные от обобщенных координат по времени t .

Обобщенные силы Q 1 , Q 2 , ..., Q n .
Рассмотрим возможное перемещение системы, при котором координата q k получит перемещение δq k . Остальные координаты остаются неизменными. Пусть δA k - это работа, совершаемая внешними силами при таком перемещении. Тогда
δA k = Q k δq k , или
.

Если, при возможном перемещении системы, изменяются все координаты, то работа, совершаемая внешними силами при таком перемещении, имеет вид:
δA = Q 1 δq 1 + Q 2 δq 2 + ... + Q n δq n .
Тогда обобщенные силы являются частными производными от работы по перемещениям:
.

Для потенциальных сил с потенциалом Π ,
.

Уравнения Лагранжа - это уравнения движения механической системы в обобщенных координатах:

Здесь T - кинетическая энергия. Она является функцией от обобщенных координат, скоростей и, возможно, времени. Поэтому ее частная производная также является функцией от обобщенных координат, скоростей и времени. Далее нужно учесть, что координаты и скорости являются функциями от времени. Поэтому для нахождения полной производной по времени нужно применить правило дифференцирования сложной функции:
.

Использованная литература:
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Из двух основных динамических харак­теристик, величина является векторной. Иногда при изучении движения точки вместо изменения самого вектора оказывается необходимым рассматривать изменение его момента. Мо­мент вектора относительно данного центра О или оси z обозна­чается или и называется соответственно моментом количества движения или кинетическим моментом точки отно­сительно этого центра (оси). Вычисляется момент вектора так же, как и момент силы. При этом вектор считается приложенным к движущейся точке. По модулю , где h - длина перпендикуляра, опущенного из центра О на направление вектора (рис.15).

Теорема моментов отно­сительно центра. Найдем для ма­териальной точки, движущейся под дей­ствием силы F (рис.15), зависимость между моментами векторов и отно­сительно какой-нибудь неподвижного центра О . В конце было показано, что .

Аналогично

При этом вектор направлен перпендикулярно плоскости, проходящей через центр О и вектор , а вектор - перпендикулярно плоскости, проходящей через центр О и вектор .

Рис.15

Дифференцируя выражение по времени, получаем:

Но , как векторное произведение двух параллельных векторов, a . Следовательно,

В результате мы доказали следующую теорему моментов относительно центра: производная по времени от момента количества движения точки, взятого относительно какого-нибудь неподвижного центра, равна моменту действующей на точку силы относительно того же центра . Аналогичная теорема имеетместо для моментов вектора силы относительно какой-нибудь оси z, в чем можно убедиться, проектируя обе части равенства на эту ось. Ма­тематическое выражение теоремы моментов относительно оси дается формулой .

Вопросы для самопроверки

Каковы две меры механического движения и соответствующие им измерители действия силы?

Какие силы называют движущими?

Какие силы называют силами сопротивления?

Запишите формулы для определения работы при поступательном и вращательном движениях?



Какую силу называют окружной? Что такое вращающий момент?

Сформулируйте теорему о работе равнодействующей.

Как определяется работа постоянной по модулю и направлению силы на прямолинейном перемещении?

Чему равна работа силы трения скольжения, если эта сила постоянна по модулю и направлению?

Каким простым способом можно вычислить работу постоянной по модулю и направлению силы на криволинейном перемещении?

Чему равна работа равнодействующей силы.

Как выразить элементарную работу силы через элементарный путь точки приложения силы и как – через приращение дуговой координаты этой точки?

Каково векторное выражение элементарной работы?

Каково выражение элементарной работы силы через проекции силы на оси координат?

Напишите различные виды криволинейного интеграла, определяющего работу переменной силы на конечном криволинейном перемещении.

В чем состоит графический способ определения работы переменной силы на криволинейном перемещении?

Как вычисляются работа силы тяжести и работа силы упругости?

На каких перемещениях работа силы тяжести: а) положительна, б) отрицательна, в) равна нулю.

В каком случае работа силы упругости положительна и в каком – отрицательна?

Какая сила называется: а) консервативной; б) неконсервативной; в) диссипативной?

Что называется потенциалом консервативных сил?

Какое поле называется потенциальным?

Что называется силовой функцией?

Что называется силовым полем? Приведите примеры силовых полей.

Какими математическими зависимостями связаны потенциал поля и силовая функция?

Как определить элементарную работу сил потенциального поля и работу этих сил на конечном перемещении системы, если известна силовая функция поля?

Какова работа сил, действующих на точки системы в потенциальном поле, на замкнутом перемещении?

Чему равна потенциальная энергия системы в любом ее положении?

Чему равно изменение потенциальной энергии механической системы при перемещении ее из одного положения в другое?

Какая зависимость существует между силовой функцией потенциального поля и потенциальной энергией системы, находящейся в этом поле?

Вычислите изменение кинетической энергии точки массой 20 кг, если ее скорость увеличилась с 10 до 20 м/с?

Как определяются проекции на координатные оси силы, действующей в потенциальном поле на любую точку системы?

Какие поверхности называются эквипотенциальными и каковы их уравнения?

Как направлена сила, действующая на материальную точку в потенциальном поле, по отношению к эквипотенциальной поверхности, проходящей через эту точку?

Чему равна потенциальная энергия материальной точки и механической системы, находящихся под действием сил тяжести?

Какой вид имеют эквипотенциальные поверхности поля силы тяжести и ньютоновой силы тяготения?

В чем заключается закон сохранения и превращения механической энергии?

Почему под действием центральной силы материальная точка описывает плоскую кривую?

Что называют секторной скоростью и как выразить ее модуль в полярных координатах?

В чем заключается закон площадей?

Какой вид имеет дифференциальное уравнение в форме Бине, определяющее траекторию точки, движущейся под действием центральной силы?

По какой формуле определяется модуль ньютоновой силы тяготения?

Каков канонический вид уравнения конического сечения и при каких значениях эксцентриситета траектория тела, движущегося в поле ньютоновой силы тяготения, представляет собой окружность, эллипс, параболу, гиперболу?

Сформулируйте законы движения планет, открытые Кеплером.

При каких начальных условиях тело становится спутником Земли и при каких оно способно преодолеть земное притяжение?

Каковы первая и вторая космические скорости?

Запишите формулы для расчета работы при поступательном и вращательном движениях?

Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести?

Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях?

Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин?

Чему равна работа силы, приложенной к прямолинейно движущемуся телу массой 100 кг, если скорость тела увеличилась с 5 до 25 м/с?

Определите общий КПД механизма, если при мощности двигателя 12,5 кВт и общей силе сопротивления движению 2 кН скорость движения 5 м/с.

Если автомобиль въезжает на гору при неизменной мощности двигателя, то он уменьшает скорость движения. Почему?

Работа постоянной силы при прямолинейном перемещении W =10 Дж. Какой угол составляет направление силы с направлением перемещения?

1) острый угол;

2) прямой угол;

3) тупой угол.

Как изменится кинетическая энергия прямолинейно движущейся точки, если ее скорость увеличится в два раза?

1) увеличится в два раза;

2) увеличится в четыре раза.

Чему равна работа силы тяжести при горизонтальном перемещении тела?

1) произведению силы тяжести на перемещение;

2) работа силы тяжести равна нулю.

Задачи для самостоятельного решения

Задача 1. С башни высотой 25 м горизонтально брошен камень со скоростью 15 м/с. Найти кинетическую и потенциальную энергию камня спустя одну секунду после начала движения. Масса камня 0,2 кг.

Задача 2. Камень бросили под углом 60° к горизонту со скоростью 15 м/с. Найти кинетическую, потенциальную и полную энергию камня: 1) спустя одну секунду после начала движения, 2) в высшей точке траектории. Масса камня 0,2 кг. Сопротивлением воздуха пренебречь.

Задача 3.

Задача 4. Танк, масса которого 15 т и мощность 368 кВт, поднимается в гору с уклоном 30°. Какую максимальную скорость может развивать танк?

Задача 5. Люстра массой 100 кг подвешена к потолку на металлической цепи, длина которой 5 м. Какова высота, на которую можно отклонить люстру, чтобы при последующих качаниях цепь не оборвалась, если известно, что разрыв наступает при силе натяжения 2 кН?

Задача 6. Ветер, дующий со скоростью v 0 =20 м/с, действует на парус площадью s=25 м 2 с силой F=a sρ(v 0 -v) 2 /2, где а - безразмерный коэффициент, ρ - плотность воздуха, v - скорость судна. Определите условия, при которых мощность ветра максимальна. Найти работу силы ветра.

Задача 7. Автомобиль массой в 1 тонну движется под гору при выключенном моторе с постоянной скоростью 54 км/ч. Уклон горы равен 4 м на каждые 100 м пути. Какую мощность должен развивать двигатель этого автомобиля, чтобы автомобиль двигался с той же скоростью в гору с тем же уклоном?

Задача 8. Молот массой 1,5 т ударяет по раскаленной болванке, лежащей на наковальне и деформирует болванку. Масса наковальни вместе с болванкой равна 20 т. Определить КПД при ударе молота, считая удар неупругим. Считать работу, совершенную при деформации болванки, полезной.

Задача 9. Боек (ударная часть) свайного молота массой 500 кг падает на сваю массой 100 кг со скоростью 4 м/с. Определить: а) кинетическую энергию бойка в момент удара; б) энергию, затраченную на углубление сваи в грунт, в) энергию, затраченную на деформацию сваи, г) КПД удара бойка о сваю. Удар бойка о сваю рассматривать как неупругий.

Задача 10. Снаряд вылетает из орудия под углом α к горизонту со скоростью v 0 . В верхней части траектории снаряд разрывается на две равные части, причем скорости частей непосредственно после взрыва горизонтальны и лежат в плоскости траектории. Одна половина упала на расстоянии s от орудия по направлению выстрела. Определить место падения второй половины, если известно, что она упала дальше первой. Считать, что полет снаряда происходит в безвоздушном пространстве.

Задача 11. Снаряд летит в безвоздушном пространстве по параболе и разрывается в верхней точке траектории на две равные части. Одна половина снаряда упала вертикально вниз, вторая на расстоянии s по горизонтали от места разрыва. Определить скорость снаряда перед разрывом, если известно, что взрыв произошел на высоте Н и упавшая по вертикали вниз половина снаряда падала время τ.

Для материальной точки основной закон динамики можно представить в виде

Умножая обе части этого соотношения слева векторно на радиус-вектор (рис. 3.9), получаем

(3.32)

В правой части этой формулы имеем момент силы относительно точки О. Преобразуем левую часть, применив формулу производной векторного произведения

Но как векторное произведение параллельных векторов. После этого получаем

(3.33)

Первая производная по времени момента количества движения точки относительно какого-либо центра равна моменту силы относительно того же центра.


Пример вычисления кинетического момента системы. Вычислить кинетический момент относительно точки О системы, состоящей из цилиндрического вала массой М = 20 кг и радиусом R = 0.5м и спускающегося груза массой m = 60 кг (рисунок 3.12). Вал вращается вокруг оси Oz с угловой скоростью ω = 10 с -1 .

Рисунок 3.12

; ;

При заданных входных данных кинетический момент системы

Теорема об изменении кинетического момента системы. К каждой точке системы приложим равнодействующие внешних и внутренних сил. Для каждой точке системы можно применить теорему об изменении момента количества движения, например в форме (3.33)

Суммируя по всем точкам системы и учитывая, что сумма производных равна производной от суммы, получим

По определению кинетического момента системы и свойству внешних и внутренних сил

поэтому полученное соотношение можно представить в виде

Первая производная по времени кинетического момента системы относительно какой-либо точки равна главному моменту внешних сил, действующих на систему, относительно той же точки.

3.3.5. Работа силы

1) Элементарная работа силы равна скалярному произведению силы на дифференциал радиус вектора точки приложения силы (рис. 3.13)

Рисунок 3.13

Выражение (3.36) можно записать также в следующих эквивалентных формах

где - проекция силы на направление скорости точки приложения силы.

2) Работа силы на конечном перемещении

Интегрируя элементарную работу силы, получим следующие выражения для работы силы на конечном перемещении из точки А в точку В

3) Работа постоянной силы

Если сила постоянна, то из (3.38) следует

Работа постоянной силы не зависит от формы траектории, а зависит только от вектора перемещения точки приложения силы .

4) Работа силы веса

Для силы веса (рис. 3.14) и из (3.39) получим

Рисунок 3.14

Если движение происходит из точки В в точку А, то

В общем случае

Знак «+» соответствует движению точки приложения силы «вниз», знак «-» - вверх.

4) Работа силы упругости

Пусть ось пружины направлена по оси x (рис.3.15), а конец пружины перемещается из точки 1 в точку 2, тогда из (3.38) получим

Если жесткость пружины равна с , то , тогда

А (3.41)

Если конец пружины перемещается из точки 0 в точку 1, то в этом выражении заменяем , , тогда работа силы упругости примет вид

(3.42)

где - удлинение пружины.

Рисунок 3.15

5) Работа силы приложенной к вращающемуся телу. Работа момента.

На рис. 3.16 показано вращающееся тело, к которому приложена произвольная сила . При вращении точка приложения этой силы движется по окружности.

Сначала рассмотрим случай одной материальной точки. Пусть - масса материальной точки М, - ее скорость, - количество движения.

Выберем в окружающем пространстве точку О и построим момент вектора относительно этой точки по тем же правилам, по которым в статике вычисляется момент силы. Получим векторную величину

которая называется моментом количества движения материальной точки относительно центра О (рис. 31).

Построим с началом в центре О декартову прямоугольную систему координат Oxyz и спроектируем вектор ко на эти оси. Его проекции на эти оси, равные моментам вектора относительно соответствующих координатных осей, называются моментами количества движения материальной точки относительно координатных осей:

Пусть теперь имеем механическую систему, состоящую из N материальных точек . В этом случае момент количества движения можно определить для каждой точки системы:

Геометрическая сумма моментов количеств движения всех материальных точек, входящих в состав системы, называется главным моментом количеств движения или кинетическим моментом системы.

В некоторых задачах в качестве динамической характеристики движущейся точки вместо самого количества движения рассматривают его момент относительно какого-либо центра или оси. Эти моменты определяются также как и моменты силы.

Моментом количеством движения материальной точки относительно некоторого центра О называется вектор, определяемый равенством

Момент количества движения точки называют также кинетическим моментом .

Момент количества движения относительно какой-либо оси , проходящий через центр О, равен проекции вектора количества движения на эту ось .

Если количество движения задано своими проекциями на оси координат и даны координаты точки в пространстве, то момент количества движения относительно начала координат вычисляется следующим образом:

Проекции момента количества движения на оси координат равны:

Единицей измерения количества движения в СИ является – .

Конец работы -

Эта тема принадлежит разделу:

Динамика

Лекция.. краткое содержание введение в динамику аксиомы классической механики.. введение..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы единиц
СГС Си Техническая [L] см м м [M]

Дифференциальные уравнения движения точки
Основное уравнение динамики можно записать так

Основные задачи динамики
Первая или прямая задача: Известна масса точки и закон ее движения, необходимо найти действующую на точку силу. m

Наиболее важные случаи
1. Сила постоянна.

Количество движения точки
Количеством движения материальной точки называется вектор, равный произведению м

Элементарный и полный импульс силы
Действие силы на материальную точку в течении времени

Теорема об изменении количества движения точки
Теорема. Производная по времени от количества движения точки равна действующей на точку силе. Запишем основной закон динамики

Теорема об изменении момента количества движения точки
Теорема. Производная по времени от момента количества движения точки, взятого относительно какого-нибудь центра, равна моменту действующей на точку силы относительно того же

Работа силы. Мощность
Одна из основных характеристик силы, оценивающих действие силы на тело при некотором его перемещении.

Теорема об изменении кинетической энергии точки
Теорема. Дифференциал кинетической энергии точки равен элементарной работе силы, действующей на точку.

Принцип Даламбера для материальной точки
Уравнение движения материальной точки относительно инерциальной системы отсчета под действием приложенных активных сил и сил реакции связей имеет вид:

Динамика несвободной материальной точки
Несвободной материальной точкой называется точка, свобода движения которой ограничена. Тела, ограничивающие свободу движения точки, называются связями

Относительное движение материальной точки
Во многих задачах динамики движение материальной точки рассматривается относительно системы отсчета, движущейся относительно инерциальной системы отсчета.

Частные случаи относительного движения
1. Относительное движение по инерции Если материальная точка движется относительно подвижной системы отсчета прямолинейно и равномерно, то такое движение называется относительны

Геометрия масс
Рассмотрим механическую систему, которая состоит из конечного числа материальных точек с массами

Моменты инерции
Для характеристики распределения масс в телах при рассмотрении вращательных движений требуется ввести понятия моментов инерции. Момент инерции относительно точки

Моменты инерции простейших тел
1. Однородный стержень 2. Прямоугольная пластина 3. Однородный круглый диск

Количество движения системы
Количеством движения системы материальных точек называется векторная сумма колич

Теорема об изменении количества движения системы
Эта теорема существует в трех различных формах. Теорема. Производная по времени от количества движения системы равна векторной сумме всех внешних сил, действующих н

Законы сохранения количества движения
1. Если главный вектор всех внешних сил системы равен нулю (), то количество движения системы постоянно

Теорема о движении центра масс
Теорема Центр масс системы движется так же, как и материальная точка, масса которой равна массе всей системы, если на точку действуют все внешние силы, приложенные к рассмат

Момент количества движения системы
Моментом количества движения системы материальных точек относительно некоторого

Момент количества движения твердого тела относительно оси вращения при вращательном движении твердого тела
Вычислим момент количества движения твердого тела относительно оси вращения.

Теорема об изменении момента количества движения системы
Теорема. Производная по времени от момента количества движения системы, взятого относительно какого-нибудь центра, равна векторной сумме моментов внешних сил, действующих на

Законы сохранения момента количества движения
1. Если главный момент внешних сил системы относительно точки равен нулю (

Кинетическая энергия системы
Кинетической энергией системы называют сумму кинетических энергий всех точек системы.

Кинетическая энергия твердого тела
1. Поступательное движение тела. Кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе этого тела.

Теорема об изменении кинетической энергии системы
Эта теорема существует в двух формах. Теорема. Дифференциал кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систе

2024 english-speak.ru. Изучение английского языка.