Лекции по основам инженерного творчества. Изобретательство как форма технического творчества. Теория решения изобретательских задач Г.С. Альтшуллера. Принципы инженерного творчества: Учебное пособие

Методы инженерного творчества

Мы считаем, что специалист, не имеющий основательной методологической подготовки, не может должным образом ориентироваться в непрерывно обновляющемся многообразии мира техники, даже в относительно узкой "своей" специальной области, не говоря уже о межотраслевых задачах. Для полной деятельности совершенно не достаточно иметь даже очень хорошую, но относительно узкую подготовку. Необходимо сформировать свою мировоззренческую позицию, связанную с научным и инженерным творчеством в вашей области деятельности. Проблемы творчества не связываются с системным подходом и законами развития систем. Рассматриваются проблемы методологии творчества при изобретательстве и проектировании систем. Системный подход в них явно не используется, входит как-то интуитивно и подменяется другими понятиями. В ряде работ по системному подходу не рассматриваются законы развития и функционирования систем посвящено методам принятия решений, но они не базируются на идеях системности и законах развития систем. Есть ряд работ, посвященных методам создания новых технических решений.

Есть ряд работ, посвященных методам создания новых технических решений. Но предлагаемая в них методология не содержит взаимосвязи системного подхода, законов развития систем и методов принятия решений. Ряд работ посвящен анализу творческой деятельности, психологии творчества, влиянию человеческого фактора на принятие решений, но без связи с системным подходом, и закономерностями развития систем. Сегодня без ускорения научно-технического прогресса наше общество не решит своих экономических и социальных проблем. Особое внимание следует уделять анализу проблем на стыке разных наук - естественных, технических и общественных. Поэтому необходимо в общей взаимосвязи, на основе системного подхода овладение законами развития технических наук, эволюции антропогенного мира. Необходимо привлечь внимание к формированию мировоззренческих позиций инженеров, научных работников и преподавателей. Каждому из нас необходимо овладеть искусством системного подхода, использовать объективные законы и закономерности развития техники и на их основе принимать практические творческие решения. Три составные части инженерного творчества соответствии с предложенной концепцией тремя составными частями инженерного творчества являются:

    системный подход;

    законы развития техники;

    методы принятия решений.

Системный подход как методология изучения объекта состоит в том, что его недопустимо рассматривать без учета всей его полноты и сложности строения, целостности, взаимодействия и взаимообусловленности всех составляемых элементов между собой и со средой, из которой этот объект (система) выделен. В сложности строения рождается новое качество, которое отсутствовало у элементов, ее составляющих. Сущность системного подхода и проста, и сложна. И ультрасовременная и древняя, как мир, ибо уходит корнями к истокам человеческой цивилизации. Законы развития техники должны быть основой и мощным ускорителем ее развития. Техника – это одно из проявлений творческой человеческой деятельности, то, что называют иногда второй природой (антропогенным миром), полагая при этом первой природой естественный мир. Ни у кого нет желания пренебрегать объективными законами природы. А вот в антропогенном мире у людей, не ведающих о законах его развития, о характере их действия возникает соблазн перескочить через эти законы. В наших институтах пока, к сожалению, законы развития техники не изучаются.

Методы принятия решений необходимы для поиска решений все более усложняющихся технических задач. Овладеть разнообразным инструментарием мыслительного процесса для интенсификации творческой деятельности это настоятельная задача инженера ученого педагога.

В целом речь идет о повышении общей культуры мышления, творчества в наши дни. Деятельность инженера, ученого педагога (учителя) должна опираться на творчество особенно в наше время. Недостаточно узкой специальной подготовки для полноценной научной и инженерной деятельности. Непрерывно обновляющееся многообразие мира техники неразрывная связь не только с естественными, но и социальными проблемами с межотраслевыми задачами требуют от специалиста основательной методологической подготовки, укрепления своих мировоззренческих позиции и совершенствования творческого арсенала.

Фундаментальные основы инженерного искусства. Человек, овладевая природными и общественными условиями своего существования, создает свою - "вторую природу". Этот человеческий мир, базируясь на природе вместе с тем составляет ту великую "прибавку", которая исторически является самой молодой, но вместе с тем самой качественно сложной реальностью миро знания. Техника как часть антропогенного мира определяется как совокупность средств человеческой деятельности создаваемых в целях производства и обслуживания непосредственных потребностей общества. Проблема качественных различий мира "естественного" и искусственного" не нова. Однако в нашем сознании главным образом в силу несовершенства образования сложился стереотип такого убеждения, при котором "искусственному" миру как вторичному как бы предписывается исполнять только законы, действующие в "естественном" мире. Однако в эпоху НТР такие стереотипы не только не соответствуют фактическому положению в науке, но наносят ей непоправимый вред, ибо сама практика научного познания начинает требовать, чтобы закономерности знания об искусственном нашли свое адекватное отражение в научной картине мира и методологии. Одним из ярких проявлении тому служат высказывания крупного естествоиспытателя Герберта Саймона. Сердцевина идеи Г. Саймона заключается в том, что необходимо разработать некую универсальную теорию конструирования или основы методологии создания искусственного. Он верит, что создание такой теории позволит исправить тот "флюс", который сейчас в нашем познании составляют естественно научные знания. Сейчас очевидным становится, что инженеру, чтобы строить конкретную действительность, исходя из потребностей общества, уже недостаточно только "всеобщей ориентации", он должен иметь под рукой "эффективные познавательные инструменты". Инженер, как правило, не добывает фундаментальных знаний "о природе вещей", но он добывает фундаментальные знания "о синтезе вещей". И вряд ли можно сказать, что эти исследования менее важны, чем первые. Потому что конечной целью всякого человеческого познания, да и вообще - проявления активной человеческой позиции, является не накопление знаний, как таковых, а стремление заставлять их служить себе. Здесь мы подходим к важному выводу, что объективное существование (точнее - сосуществование) двух типов знаний: об естественном и об искусственном - рождает два типа системных исследований, один из которых развивается на базе общетеоретической, общефилософской, другой - на специально научной. Если непосредственной целью естествознания является познание истины, раскрытия законов природы, то непосредственной целью технических наук является содействие человеку в практическом использовании этих законов, выяснение и обоснование их применения. Методологическое единство естествознания состоит в том, что как в природе, так и в технике люди имеют дело с единой материей, существующей и развивающейся по единым законам. Отсюда следует, что универсальные диалектико-материалистические принципы познания не могут не быть общими как для природы, так и техники. Обогащение материалистической диалектики, как общей теории развития, обусловливается преимущественно спецификой технического объекта, проявляющегося в том, что здесь взаимодействуют две формы объективного процесса: природа и целеполагающая деятельность человека. Принятие решений на основе системного подхода. Сознательная жизнь человека, особенно творческая деятельность, представляет непрерывную последовательность принятия решений по многим вопросам и проблемам, вызываемым потребностью общества и его лично.

Вследствие этого необходимо привлечь внимание к данной проблеме и попытаться разобраться и ответить на следующие вопросы. На каких принципах (основах) зиждется методология принятия решений в творческой деятельности? Что есть общего между философской теорией познания, системным подходом и разнообразными методами принятия решений? Как разобраться и овладеть многочисленными частными приемами, и в каких областях они эффективны? Как обучаться этим методам активизации и интенсификации мыслительного процесса? Какую роль играют в этом современные компьютеры, информационно-измерительная и другая техника? Могут ли они заменить творческую деятельность человека? Достаточно ли обучать инженера, ученого лишь специальным дисциплинам по его профессии? Как не завязнуть в трясине "глухоты специализации"? Принятие решений. Что это такое. Дадим содержательное определение понятия "принятие решения". В силу своей многоплановости оно не может быть простым, тем более - однозначным. Существует два понятия "принятие решения", а именно: философское (общее), затрагивающее глубинные мыслительные процессы в познании мира; прагматическое (конкретное), описывающее методологию решения инженерных задач.

Прагматический аспект. Сюда мы относим многочисленные практические методы принятия решений, изложенные ниже, в том числе Акоффа, Альтшуллера и др. Принятие решения рассматривается как процесс, состоящий условно по меньшей мере из четырех этапов.

Первый этап - исследование проблемы и постановка цели (задачи). Часто исследование потребности протекает медленно, часто бессознательно, а то и подспудно. Исследование потребности заканчивается постановкой задачи на разработку нового решения, на преодоление вскрытого основного противоречия.

Второй этап - разработка альтернативных вариантов нового (искомого) решения, т.е. поиск разных путей преодоления основного противоречия.
Третий этап - оценка и ранжирование альтернативных решений с точки зрения их приближения к требованиям, сформулированным в процессе постановки задачи. Четвертый этап - тесно связан с предыдущими, как и все между собой. После выбора и утверждения одного из альтернативных вариантов необходимо глубокое и системное осмысление полученного результата, какие новые проблемы порождаются? Если результаты неудовлетворительны, то необходимо вернуться к начальной стадии процесса, к следующему витку поиска решения. Методы направленного поиска решения инженерных задач. Теория и алгоритм решения изобретательских задач (ТРИЗ и ЛРИЗ) Г.С. Альтшулдера. Эти приемы разработаны известным изобретателем Г.С. Альтщуллером. В основе ТРИЗ лежит представление о закономерном развитии технических систем, а также патентный фонд, содержащий описание многих миллионов изобретений, справочный фонд физических эффектов и явлений. На базе ТРИЗ создан ряд алгоритмов решения изобретательских задач АРИЗ 77 и ТРИЗ-85 как альтернатива малоэффективному и неперспективному старому способу "проб и ошибок" и другим методам. ТРИЗ (теория решения изобретательских задач) является в настоящее время единственной методологией поиска новых решений, дающей стабильные положительные результаты, доступной для массового изучения и использования в производственных условиях. Так считают многие сторонники и последователи Г. С. Альтшуллера разработавшие "изобретающую машину". Теоретическим фундаментом ТРИЗ, наряду с законами развития технических систем, является анализ и обработка больших массивов патентной информации. В качестве ключевых понятий в ТРИЗ выступают: изобретательская ситуация (описание технической системы с указанием на тот либо иной недостаток); техническое противоречие. Это понятие основывается на том, что поскольку техническая система представляет собой целостный "организм" (систему), то попытки улучшения одной ее части (функции, свойства) приводят к неминуемому ухудшению других частей. Решить изобретательскую задачу - значит выявить и устранить техническое противоречие.

Алгоритм решения изобретательских задач (АРИЗ) - пример применения материалистической диалектики и системного подхода к процессу технического творчества. Методика основана на учении о технических противоречиях (ТРИЗ). Процесс решения - это последовательность операций по выявлению, уточнению и преодолению технического противоречия. Последовательность, направленность и активизация мышления достигаются при этом ориентировкой на идеальный конечный результат (ИКР), т.е. идеальное решение, способ, устройство.

Современная научно-техническая революция, характерной чертой которой является бурное развитие науки, техники и производства, вошла в противоречие со старым, ненадежным, малопроизводительным способом мышления. Человечество пытается преодолеть это противоречие путем создания специальных научных методов активизации и рациональной организации инженерного творчества. Это стремление повысить эффективность творческого труда инженера породило ряд приемов, методов и методик, позволяющих в той или иной степени активизировать мышление, развивать и реализовать творческие способности человека.

Цель методов активации поиска новых технических решений состоит в том, чтобы сделать процесс генерирования идей интенсивнее, повысить «концентрацию» оригинальных идей, в общем их потоке. Для этого в методах применяют специальные механизмы повышения эффективности творческого процесса.

Наиболее широкое распространение из числа коллективных методов поиска новых идей решения изобретательских (инженерных) задач нашли метод «мозгового штурма» и его разновидности, а также метод синектики.

«Мозговой штурм». В основу метода «мозгового штурма» положен принцип разделения в пространстве или во времени процессов генерирования идей и их экспертизы, что позволяет в значительной мере преодолевать такие отрицательные свойства человеческого мышления, как психологическая инерция, стремление действовать в соответствии с прошлым опытом и знаниями, идти традиционными путями, устранять психологические препятствия, вызываемые боязнью критики.

Реализация указанного принципа достигается тем, что сформированную перед началом штурма только в общих чертах задачу последовательно решают две группы людей по 14-15 человек в каждой. Рекомендуется для проведения штурма приглашать людей разных специальностей и разного уровня образования. В то же время нежелательно включать в одну группу людей, присутствие которых может в какой-то степени стеснять других, например руководителей и подчиненных. Целью первой группы является только выдвижение идей решения задачи. В состав этой группы включают людей, склонных к абстрагированию, обладающих чувством новизны и фантазии, способных генерировать идеи, поэтому этих людей называют «генераторами идей».

Вторая группа осуществляет экспертизу выдвинутых в результате «штурма» идей, устанавливает степень их ценности с позиции оригинальности решения, экономичности и практической целесообразности. Вторую группу называют «экспертами идей» и в ее состав включают людей с аналитическим, критическим складом ума.

В настоящее время существует много разновидностей метода «мозгового штурма»: индивидуальный, обратный, парный и массовый, двухступенчатый с оценкой идей, «конференция идей», с дополнительным сбором идей. В индивидуальном «штурме» задачи участвует один человек, последовательно генерируя идеи, а затем анализируя и оценивая их. В обратном «мозговом штурме» на первое место выдвигается критика, что позволяет находить недостатки и ограничения технического объекта или высказанных идей. Обратный «мозговой штурм» целесообразно применять для выявления и постановки новых изобретательских задач, которые, как правило, носят более конкретный характер. Парный «мозговой штурм» проводят два человека, один из которых генерирует идеи, а второй их анализирует и оценивает.

Массовый «мозговой штурм» проводится в больших аудиториях с целью увеличения эффективности процесса генерирования новых идей. Всех участников «штурма» делят на группы по 5-7 человек, их руководителей за 2-3 дня ставят в известность о предстоящем «штурме», знакомят с порядком его проведения и с задачей, которую предстоит решать. Задачу формулируют как личную.

«Мозговой штурм» получил дальнейшее развитие в виде метода «конференции идей».

Синектика . Сущность метода определяет его название «синектика», что в переводе с греческого означает совмещение разнородных элементов. В отличие от метода «мозгового штурма» поиск новой идеи или решения в процессе синектического заседания осуществляется группой профессионалов (оптимальный состав 5-7 человек) - людей различных специальностей, которых обучают изобретательским приемам творческого решения проблем путем неограниченной тренировки воображения и объединения несовместимых элементов.

Синектическое заседание отличается от «мозгового штурма» использованием некоторых приемов психологической настройки, в том числе очень активным применением различных аналогий.

Главными инструментами поиска новых идей решения проблемы в ходе синектического заседания являются аналогии, среди которых чаще всего используются следующие: прямая, личная, символическая, фантастическая.

При прямой аналогии делается попытка использования аналогичных решений в других отраслях техники или живой природе по отношению к рассматриваемому объекту или процессу.

Личная аналогия, или эмпатия , заключается в отождествлении себя с рассматриваемым объектом или процессом.

Сущность символической (абстрактной) аналогии заключается в том, что требуется в краткой парадоксальной форме (буквально в двух словах) сформулировать фразу, отражающую суть явления (процесса) рассматриваемой проблемы. Она должна выражать связь между словами, которые обычно никак друг с другом не сопоставляются, и содержать в себе нечто неожиданное, удивительное.

Применяя фантастическую аналогию , вводят различные фантастические средства или персонажи, выполняющие то, что требуется по условиям задачи. Такая аналогия способствует генерации свежих и оригинальных идей, активизирует творческое мышление.

Полученные в результате использования аналогии новые идеи увязывают с решаемой проблемой, анализируют и определяют их возможности. Отдельные предложения, возникающие в процессе обсуждения, используются, чтобы вызвать новые точки зрения на проблему, способствующие успешному ее разрешению. Важным элементом этого этапа является критическая оценка экспертов.

На последнем этапе синектического заседания осуществляются развитие и максимальная конкретизация идеи, признанной наиболее удачной. Основное время синекторы посвящают инженерному анализу, изучению и обсуждению полученных результатов, консультируются со специалистами, экспериментируют, а когда решение созрело, занимаются поисками наилучших способов его реализации.

Для активации поиска новых идей в практике инженерного творчества применяются так называемые ассоциативные методы (каталога, фокальных объектов, гирлянд случайностей и ассоциаций).

Процесс поиска новых идей с помощью ассоциативных методов осуществляется путем поиска аналогов совершенствуемого объекта, переноса знаний из одной области в другую, интерпретации нового посредством известных понятий и т.д. В связи с этим в творческом процессе достаточно эффективно используются такие источники генерирования новых идей, как ассоциация, метафора и аналогия.

Ассоциация – это связь между отдельными представлениями, при которой одно представление вызывает другое. Метафора означает перенесение свойств одного предмета (явления) на другой объект на основании общего для обоих признака. Аналогия отражает сходство предметов, явлений, процессов в каких-либо свойствах.

Для возникновения ассоциаций и генерирования идей можно использовать цвет, как он оказывает определенное психологическое воздействие на человека.

Красный цвет психофизиологически наиболее активно воздействует на человека, стимулирует его психическую деятельность, активизирует реакции, поэтому используется для кратковременной активизации деятельности; продолжительное воздействие при больших угловых размерах поля зрения вызывает сенсорное утомление и спад активности; плохо виден при слабой освещенности.

Оранжевый цвет стимулирует нервно-мышечную деятельность, способствует психологическому контакту с окружающей средой, при большой насыщенности вызывает ощущение угрозы, поэтому применяется в качестве сигнала предупреждения.

Желтый цвет ассоциируется с солнечным светом, действует возбуждающе, способствует впечатлению уюта и чистоты помещения, стимулирует внимание, Однако слишком желтый цвет утомляет глаза; в соединении с черным цветом используется в сигнальной окраске для обеспечения безопасности движения.

Зеленый – цвет травы, деревьев; благоприятно действует на зрение, снижает нервную усталость, способствует бодрому настроению, стимулирует деятельность.

Голубой цвет ассоциируется с небом и водой, снижает возбуждение, успокаивает.

Синий цвет психологически вызывает ощущение спокойствия, создает благоприятную обстановку для умственной деятельности, снижает

ощущение умственного утомления.

Фиолетовый и желто-зеленый цвета снижают напряжение; рекомендуются для помещений, где по характеру деятельности требуются тонкое восприятие и наблюдательность

Белый цвет ассоциируется с чистотой, стимулирует поддержание порядка.

Темные цвета, в том числе черный вызывают пессимистическое настроение, чувство угнетения, тяжести, снижают эффективности освещения; черный цвет весьма подходит для создания контрастов; предметы, окрашенные в черный цвет, кажутся более тяжелыми.

Применение ассоциаций, метафор и аналогий позволяет находить подсказки решения различных инженерных задач. Эти свойства ассоциаций, метафор и аналогий и послужили основой для создания ассоциативных методов активизации творческого мышления.

Сущность метода фокальных объектов состоит в перенесении признаков случайно выбранных объектов на совершенствуемый предмет, что приводит к резкому увеличению числа оригинальных вариантов решения задачи.

Алгоритм метода фокальных объектов определяет следующий по-

рядок действия:

    Выбор фокального объекта.

    Выбор трех-четырех случайных объектов (их берут наугад из словаря, каталога, журнала и т.д.).

    Составление для каждого случайного объекта признаков их характеризующих.

    Генерирование идей путем присоединения к фокальному объекту признаков случайных объектов.

    Развитие полученных сочетаний путем свободных ассоциаций.

    Оценка полученных идей и отбор полезных решений.

Одним из важнейших элементов инженерного мышления является творческое воображение . Воображение часто приводит к фантазии, которая связана с желанием, чтобы произошло то, чего хочется. Использование фантазии для стимулирования новых идей заключается в размышлении над некоторыми фантастическими решениями.

Часто бывает полезно рассмотреть идеальные решения, даже с некоторой долей фантазии, чтобы попытаться найти нужное.

Фантазия является сильным катализатором к поиску новых нешаблонных идей решения задач.

Метод морфологического анализа (МА) является одним из примеров реализации системного подхода в творческом процессе. Метод эффективен при решении конструкторских и технологических задач общего характера: проектирование новых машин и технологического оборудования; поиск новых вариантов технологических процессов; поиск новых применений существующего объекта (изделия); прогнозирование развития технических систем и технологий и др.

Основной принцип метода МА состоит в систематизированном анализе всех возможных вариантов, вытекающих из закономерностей строения (т.е. морфологии) совершенствуемой системы. В рассматриваемом техническом объекте (технической системе, технологическом процессе) выделяется несколько характерных для него структурных или функциональных морфологических признаков (Р). Каждый такой признак может характеризовать какой-то конструктивный режим работы, т.е. параметры или характеристики объекта, от которых зависит достижение основной цели объектом, определяемой его назначением.

Алгоритм метода морфологического анализа следующий:

Формулировка задачи (проблемы).

    Составление списка всех морфологических признаков объекта задачи, т.е. всех важных характеристик объекта, его параметров и режимов работы, от которых зависит реализация объектом своей главной цели.

    Раскрытие возможных вариантов по каждому морфологическому признаку и составление морфологической матрицы.

    Формулировка конкретных решений задачи путем сочетаний вариантов морфологических признаков.

    Определение практической ценности полученных вариантов решения задачи и выбор из них наиболее эффективных.

В результате глубоко морфологического анализа объекта можно прийти к новому взгляду на все поле возможных решений, а отсюда недалеко и до принципиально новых направлений усовершенствования конкретного технического устройства или технологического процесса.

Метод контрольных вопросов заключается в поиске решения задачи с помощью специально подготовленного перечня (списка) наводящих вопросов. Расчет делается на то, что при ответе на поставленные вопросы наступает то «озарение», которое приводит к нужной идее решения задачи.

Метод может применяться либо в форме монолога инженера, обращенного к самому себе, либо диалога, например в виде вопросов, задаваемых руководителем «мозгового штурма» членам группы «генераторов идей».

В зависимости от специфики рассматриваемого объекта или целей анализа вопросы могут быть самыми разнообразными – от очень простых до весьма сложных. Обилие вопросов в списке не означает, что ответы на каждый из них должны привести к новой идее. Если в результате поиска решения с помощью этого метода будет получена хотя бы одна интересная идея, можно считать, что вопросник свою задачу выполнил. Некоторые списки содержат не вопросы, а краткие рекомендации, в других есть и то и другое.

Списки контрольных вопросов разрабатываются путем анализа и обобщения опыта работ технологов предприятия. Список – это способ передачи опыта, он позволяет не упустить каких-либо важных моментов, обратить внимание на что-либо, направляет и расширяет возможности поиска решения.


А. И. Половинкин

ОСНОВЫ ИНЖЕНЕРНОГО ТВОРЧЕСТВА

2-е издание, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для студентов высших технических учебных заведений

«МАШИНОСТРОЕНИЕ» 1988

ББК 32.81 П52 УДК 668.512.2 (075.8)

Рецензенты д-р техн. наук проф, Р. Р. Мавлютов, канд. техн. наук А. В. Никитин, канд. психологических наук А. А. Вербицкий Половинкин А. И.

Основы инженерного творчества: Учеб. пособие для студентов втузов.—М.: Машиностроение, 1988. — 368 с.г ил.

ISBN 5-217-00016-3

Даны основные понятия, единые для различных эвристических и машинных методов инженерного творчества (функция технического объекта, функциональная структура, физический принцип действия, техническое решение, критерии развития и др.). Изложены наиболее распространенные эвристические методы: мозговой штурм, метод эвристических приемов, морфо< логический анализ и синтез, функционально-стоимостной анализ, Изложены машинные методы поискового проектирования и конструирования применительно к задачам поиска улучшенных физических принципов действия и технических решений. Весь материал иллюстрирован иа примерах из различных областей техники.

ISBN 5-217-00016-3 Издательство «Машиностроение», 1988

ПРЕДИСЛОВИЕ

В «Основных направлениях экономического и социального развития СССР на 1986—1990 годы и на период до 2000 года», утвержденных XXVII съездом КПСС, указана генеральная линия нашей страны — ускорение социально-экономического развития на основе научно-технического прогресса и всесторонней интенсификации. При этом отмечено главное направление работы: «Осуществить коренное повышение технического уровня выпускаемой продукции. Обеспечить создание и освоение производства техники новых поколений, позволяющей многократно повысить производительность труда, улучшить его условия, существенно снизить материальные затраты». Решение этих задач в первую очередь связано с изобретением, разработкой и освоением новых машин, приборов и оборудования, новых технологий и материалов.

Один из главных недостатков в подготовке большинства выпускников инженерных специальностей — неумение самостоятельно ставить новые задачи, неумение решать задачи поиска новых конструкторско-технологических решений на уровне изобретений, обеспечивающих в итоге повышение качества продукции, достижение мирового уровня, всестороннюю интенсификацию и экономию ресурсов. Учебный процесс в основном построен на решении таких теоретических и практических задач, для которых уже имеется готовая постановка задачи, дается способ ее решения в виде четкого алгоритма, имеются примеры решения задач по этому способу, а преподавателю (а часто и студенту) известен ответ. При этом решение задачи часто превращается в рутинную работу, не требующую глубоких творческих размышлений.

В дополнение к приобретению навыков решения таких задач (что выпускник также должен уметь хорошо делать!)будущийспециалист обязан овладетьзнаниями и навыками решения творческих инженерных задач, в которых нет готовой постановки, неизвестен способ решения, нет близких примеров решения аналогичных задач, а преподавателю — неизвестен ответ, обычно имеющий несколько вариантов.

Необходимость восполнения указанного пробела в подготовке специалистов особо выделена в «Основных направлениях перестройки высшего и среднего специального образования в стране», где сказано: «Первоочередная задача — осуществить решительный поворот от массового, валового обучения к усилению индивидуального подхода, развитию творческих способностей будущих специалистов... Процесс формирования инженерных кадров должен быть подчинен развитию у них навыков самостоятельного технического творчества, системного анализа технико-экономических проблем, умения находить эффективные решения».

Введение в вузах дисциплины «Основы инженерного творчества» призвано сыграть ключевую роль в реализации этого директивного указания, а также в перестройке и повышении эффективности их работы. Опыт преподавания такой дисциплины в ряде вузов страны и за рубежом позволяет прогнозировать прогрессивные положительные результаты изучения методов инженерного творчества в увязке с другими дисциплинами и различными видами учебной работы.

Во-первых, резко возрастает доля студентов, работающих увлеченно и самостоятельно, в итоге приобретающих активную позицию и повышенный творческий потенциал — весьма актуальные качества для молодого специалиста. Во-вторых, многократно увеличивается доля курсовых и дипломных проектов, содержащих творческие инженерные решения. В-третьих, возрастает объем интеллектуальной продукции на кафедре в виде авторских свидетельств и патентов на изобретения, сделанных преподавателями и студентами, а также в виде разработанных и реализованных на практике предложений по новым конструкторско-технологическим решениям.

Автор выражает благодарность и признательность Т. П. Бабинцевой, С. А. Генералову, Т. М. Зверевой, С. Г. Колесникову, С. А. Николаеву, Я- Ш. Флейтману, С. А. Фоменкову, оказавшим большую помощь в подготовке рукописи книги.

УСЛОВНЫЕОБОЗНАЧЕНИЯ

АБИЗ — автоматизированный банк инженерных енаний

ИТ — инженерное творчество ИТР — идеальное техническоерешение КПД — коэффициент полезного действия

МА — мозговая атака НТП — научно-технический прогресс

ОС — окружающая среда РЭА — радиоэлектронная аппаратура САПР — система автоматизированного проектирования СДС — синтез допустимой структуры

ТЗ — техническое задание ТИЗ — творческая инженерная задача

ТО — технический объект

ТР — техническое решение

ТФ — техническая функция УПП — универсальноепространство параметров -

ФО — физическая операция

ФП — функция планирования ФПД — физическийпринцип действия

ФС — функциональная структура ФСА — функционально-стоимостной анализ ФТЭ — физико-технический эффект

ФУ — функция управления

ФЭ — функциональный элемент ШЛП — шаг локального поиска

ЭП — эвристический прием

ЭФ — энергетическая функция

ВВЕДЕНИЕ

История развития человечества — это прежде всего история изобретения, создания и совершенствования различных изделий и технологий. Систематическое использование и обработка нашими далекими предками камня и палки, начавшиеся около миллиона лет назад, технология добывания и использования огня, возникшая примерно 100 тыс. лет назад, лук и стрелы с кремниевыми наконечниками, появившиеся около 10 тыс. лет назад, повозка с колесами, выплавка бронзы, водяное колесо, токарный станок, скрипка, паровая машина, пластмассы, телевизор, вычислительная машина, космический аппарат, искусственное сердце и необозримо многое другое — все это результаты удивительного, мучительного и величественного процесса, называемого творчеством.

Тысячи известных и безымянных изобретателей и рационализаторов породили необъятный теперь мир техники и технологии. Этот мир действительно велик. Только в нашей стране номенклатура выпускаемых изделий превышает 20 млн. единиц!

Если говорить в целом об истории инженерного творчества (ИТ), то прежде всего вызывают удивление темпы его роста, которые иллюстрируются табл. 1, где под классом изделий подразумеваются технические объекты, имеющие одинаковые или очень близкие функции (например, класс молотков, болтов, стульев, стиральных машин, токарных станков, паровых турбин и т. д.). При взгляде на табл. 1 невольно возникает вопрос, какие же показатели по числу классов и сложности изделий будут через 100 лет?! Что изменится за этот, с одной стороны, малый промежуток времени (по сравнению со всей историей технического прогресса), а с другой — очень большой, если учесть современные, заметные каждому темпы развития техники, которые продолжают ускоренно возрастать?!

Что Вы, дорогой читатель, запишите в последней строке табл. 1? Каков будет мир техники через 25, 50 и 100 лет?

Цели и задачи настоящей учебной дисциплины — обучение навыкам постановки и решения задач поиска (изобретения) новых, более эффективных конструкторско-технологических решений, в том числе решений, превосходящих мировой уровень. Такие задачи возникают при разработке новых машин, приборов, технологического оборудования и технологий, при выполнении плановых работ по реконструкции и модернизации. Решение проблемы интенсивного развития экономики выдвинуло большое число дополнительных творческих инженерных задач, связанных с экономией трудовых ресурсов, сырья, материалов и энергии.

Другая не менее важная цель изучения дисциплины — подготовка к овладению интенсивной технологией инженерного творчества, основанной на использовании методов ИТ, специально подготовленной информации и вычислительной техники.

Почему с возрастающей настойчивостью ставится вопрос массового обучения молодежи методам ИТ?

В возрасте до 20—25 лет значительно легче формируется творческая личность, осваиваются психология и методология ИТ, нежели после 30 лет. Известно, что революционные идеи создания новых высокоэффективных машин, аппаратов, приборов и технологий чаще выдвигают и разрабатывают люди до 30 лет. Ускорение научно-технического прогресса, экономическая мощь страны находятся в прямой зависимости от ее творческого потенциала, т. е. от числа творчески работающих конструкторов, технологов, ученых. Широкое и активное участие молодежи в инженерном творчестве многократно увеличивает творческий потенциал страны.

Другая причина связана с возрастанием сложности изделий, что было уже показано в табл. 1, в глобально-историческом разрезе. Однако особый интерес вызывают последние десятилетия, в течение которых наблюдаются быстрый рост сложности изделий по числу деталей и используемых физических эффектов, расширение номенклатуры используемых материалов и комплектующих элементов, рост разнообразия самих технических систем, сокращение времени их создания и морального старения, возрастание объема патентной и научно-технической информации и т. д. Эти факторы привели к такому положению, когда объем работ по выбору новых улучшенных проектно-конструкторских решений, т. е. по ИТ, начиная с середины XX века возрастает за каждые 10 лет примерно в 10 раз (при условии сохранения качества разработок). Это по существу не прекращающееся во времени взрывообразное увеличение объема работ все более не согласуется с фактическим ростом числа научных и инженерно-технических работников, призванных обеспечивать технический прогресс. Ниже показано относительное возрастание объема работ по ИТ и максимально возможные темпы роста кадрового потенциала, призванного заниматься ИТ:

Заметим, что среди всех инженеров, техников и рабочих без обучения методам ИТ результативно занимаются ИТ не более 20%, т. е. абсолютный прирост кадрового потенциала в соответствии с приведенными данными нужно умножить на коэффициент 0,1—0,2.

Несоответствие между нормальным ростом объема работ и качеством подготовки инженерных кадров породило ряд негативных последствий, в первую очередь снижение качества многих новых изделий. В ближайшем будущем наиболее высокие темпы технического прогресса (в смысле повышения показателей эффективности изделий) будут в тех странах, в которых объем работ по ИТ в наибольшей мере приближается к нормальному росту. В связи с этим мы сможем справиться с быстро нарастающим объемом работ по ИТ и обеспечить нормальные темпы технического прогресса при выполнении двух условий:

при введении массового обучения ИТ;

при широком использовании вычислительной техники в решении трудоемких и сложных задач ИТ.

Существует мнение, что умение находить, ставить и решать изобретательские и рационализаторские задачи — это «божий дар», которому нельзя обучить. Как относиться к такой точке зрения? Может ли каждый научиться изобретать?

По мнению ряда авторитетных педагогов обучение ИТ заметно повышает творческий потенциал каждого человека. Конечно, у одаренных людей при одинаковом обучении со всеми творческий потенциал остается относительно более высоким. Здесь вполне можно провести аналогию со спортом. Каждого здорового человека можно научить достаточно хорошо играть в волейбол или шахматы, но у спортсменов, имеющих соответствующие природные данные, результаты будут выше.

Если говорить конкретнее, то основная цель обучения заключается в выявлении и раскрытии творческих наклонностей и способностей, о которых многие обучаемые не подозревают (и может быть до конца своей жизни не узнали бы!). Обучение ускоряет приобретение опыта и мастерства одаренными (в смысле ИТ) специалистами. Для людей, имеющих слабые природные задатки, обучение дает в руки инструмент и навыки, которые позволяют успешно решать довольно широкий круг творческих инженерных задач. И еще один нюанс, который лучше передать словами английских проф. М. Тринга и Э. Лейтуэйта: «Как показал наш собственный опыт, лишь немногие из тех, кто наделен талантом изобретателя, умеют развивать талант и пользоваться им» .

Таким образом, необходимость массового обучения молодежи ИТ кроме всего прочего сильно связана с поднятием престижа инженера, популярности инженерного труда и повышением качества обучения во втузе. Дело в том, что многие инженеры, не умея ставить и решать творческие задачи, вынуждены заниматься утомительной и неинтересной рутинной работой. Приобретение навыков постановки и решения творческих инженерных задач значительно увеличит долю творческого труда. Хорошо известно, что с ИТ обычно связаны наиболее яркие страницы внутренней жизни человека, работающего в области техники. Кроме того, ИТ часто приносит еще дополнительное моральное и материальное вознаграждение и глубокое удовлетворение полученным результатом. Поэтому массовое обучение методам ИТ — это один из наиболее действенных путей повышения интереса к инженерному труду.

Ответим на ряд вопросов. Какие в настоящее время существуют методы ИТ? Известно довольно большое число методов, которые условно можно разделить на две группы:

1.Эвристические методы технического творчества, основанные на использовании достаточно четко описанных методик и правил поиска новых технических решений. Эти методы начали разрабатывать еще с древних времен (Сократ, Архимед); особое внимание им уделили выдающиеся ученые XVII—XVIII вв. Ф. Бэкон, Р. Декарт и Г. Лейбниц. Начиная с 40-х гг. нашего столетия резко возросли исследования и разработки по созданию и применению эвристических методов, методик, приемов, принципов, правил и т. п. В настоящее время известно более 100 эвристических методов, методик, подходов и их модификаций.

2.Компьютерные методы поискового конструирования, основанные на использовании ЭВМ в решении творческих инженерных задач. Эти методы начали разрабатывать и применять в 60-х годах. В настоящее время известны десятки различных подходов и методов поискового конструирования.

Обзор эвристических и компьютерных методов ИТ достаточно широко освещен в литературе .

Принимая во внимание довольно большое разнообразие методов ИТ и то, что их число продолжает расти (в силу молодости самой дисциплины), зададимся вопросом: Какому методу или каким методам рекомендуется в первую очередь обучать?

Как считают опытные педагоги и методисты, нецелесообразно обучать какому-либо одному методу или стараться освоить все имеющиеся подходы и методы. Студент или специалист на первом этапе или на первой ступени овладения методами ИТ должен научиться свободно пользоваться небольшим набором из трех — пяти методов. Дальнейшее повышение эффективности деятельности творчески работающего инженера связано с приобретением собственного опыта и расширением набора используемых методов и систем методов решения творческих инженерных задач.

Настоящий курс направлен на изучение трех эвристических методов (методы мозговой атаки, эвристических приемов, морфологического анализа и синтеза) и трех компьютерных методов (методы синтеза технических решений на И—ИЛИ графах, синтеза физических принципов действия, математического программирования — синтеза оптимальных структур и форм). Имеются и другие эффективные методы и системы методов инженерного творчества; метод синектики , метод контрольных вопросов 141], алгоритм решения изобретательских задач 12], специальные объектно-ориентированные компьютерные методы синтеза и анализа конструкторско-технологических решений и др.

Какие принципиальные отличия имеют эвристические методы технического творчества и методы поискового конструирования?

В 1977 г. было проведено условное разделение между эвристическими и компьютерными методами (с помощью первых решают задачи технического творчества, с помощью вторых — задачи поискового конструирования). К задачам технического творчества были традиционно отнесены такие, при которых человек решает поставленную задачу способом «проб и ошибок» или с помощью эвристических методов без использования ЭВМ. К задачам поискового конструирования отнесены такие творческие инженерные задачи, которые человек решает с использованием ЭВМ.

...

Издательство: Машиностроение

Год издания: 1988

Язык: русский

Страниц: 368

Краткое содержание

Предисловие

Условные обозначения

Введение

Часть 1. Теоретические основы инженерного творчества

Глава 1. Основные инвариантные понятия техники В основе любой сформировавшейся научной или учебной дисциплины лежит относительно небольшой набор четко определенных понятий, которые служат строительными блоками всего здания определенного раз¬дела науки. Эти понятия, как правило, связаны между собой и с понятиями фундаментальных наук. Правильно выбранные и правильно определенные понятия живут, можно сказать, вечно в соответствующей дисциплине и способствуют ее прогрессивному развитию. К таковым можно отнести, например, понятия вида и рода, органа и клетки, гена и экологической ниши в биологии, массы и ускорения, электрического заряда и напряженности поля, атома и электрона в физике и т. д. Введение ошибочных понятий, напротив, затормаживает развитие науки или способствует возникновению ложных построений, которые затем отбрасываются. В настоящей главе сделана попытка определить основные понятия техники в рамках обобщенных методов ИТ. Система таких понятий позволит рассуждать на одном языке о разных объектах техники и достаточно четко сопоставлять их свойства. При формировании основных понятий руководствовались следующими принципами: каждое понятие должно иметь отношение ко всем известным (или почти ко всем) техническим объектам (ТО)

Глава 2. Функционально-физический анализ технических объектов В настоящей главе дается методика углубленного изучения конструкции и структуры ТО, который требуется усовершенствовать. При таком изучении в первую очередь необходимо понять и уточнить следующее: какие функции выполняет каждый элемент ТО и как элементы функционально связаны между собой; какие физические операции (преобразования) выполняет каждый элемент и как они взаимосвязаны между собой; на основе каких физико-технических эффектов работает каждый элемент ТО и как они взаимосвязаны между собой. При выяснении этих вопросов появляется четкое и цельное представление об устройстве ТО (которое требуемся усовершенствовать) с функциональной и физической точек зрения. Без такого представления затруднительно заниматься поиском наиболее эффективного нового технического решения. Построение конструктивной ФС основывается на законе соответствия между функцией и структурой ТО. Разделение ТО на элементы. В основу анализа функций ТО и построения конструктивной ФС положен принцип выделения и рассмотрения структур с двухуровневой иерархией, т. е. любой ТО можно разделить на несколько элементов, каждый из которых имеет вполне определенную функцию (или функции) по обеспечению работы ТО или его элементов.

Глава 3. Критерии технических объектов Значение критериев развития особенно важно для специалистов, которые стремятся при разработке новых изделий превзойти уровень лучших мировых достижений или приобрести изделия на уровне лучших мировых достижений. Для решения этих задач критерии развития играют роль компаса, указывающего направления магистрального прогрессивного развития изделий и технологий. Поскольку любой ТО, как правило, имеет несколько критериев развития, то принцип прогрессивного развития для каждого нового поколения ТО заключается в улучшении одних и неухудшении других критериев. Наборы критериев развития для различных классов ТО в значительной степени совпадают, поэтому в целом развитие техники в большой мере подчинено, можно сказать, единому набору критериев, определяющих развитие техники. Этот единый набор включает следующие четыре группы критериев: функциональные критерии, характеризующие важнейшие показатели реализации функции ТО; технологические критерии, связанные только с возможностью и простотой изготовления ТО; экономические критерии, определяющие только экономическую целесообразность реализации функции с помощью рассматриваемого ТО.

Глава 4. Конструктивная эволюция технических объектов Изучение конструктивной эволюции связано с изучением и анализом истории развития интересующего класса ТО, имеющих одинаковые или близкие функции. Такое исследование основывается на законе прогрессивной эволюции ТО, суть которого состоит в повторении следующего цикла: 1) начало изготовления и использования поколения технических объектов; 2) накопление в течение времени недостатков у поколения 3) создание (разработка) нового поколения устраняющего недостатки и начало его изготовления и использования. Укажем некоторые наиболее важные цели проведения анализа конструктивной эволюции, которые, как увидим, несомненно оправдают значительные затраты на изучение и исследование истории техники. При создании нового поколения ТО, как правило, имеется несколько путей дальнейшего конструктивного изменения и совершенствования ТО. Среди всех альтернативных путей обычно только один бывает наиболее правильным и перспективным. Остальные часто оказываются тупиковыми. Поэтому перед конструктором каждый раз стоит ответственная задача не только изобрести несколько альтернативных улучшенных технических решений, но, главное, найти единственное наиболее правильное решение.

Глава 5. Законы строения и развития техники и их приложения Как уже было сказано, наивысший уровень инженерного творчества заключается в выявлении и формулировании законов и закономерностей строения и развития техники и сознательном их использовании при поиске более эффективных и рациональных конструкторско-технологических решений. Наука о законах техники только начинает формиро¬ваться. И первый этап, естественно, связан с формулированием и обоснованием гипотез о законах строения и развития техники. Сегодня нет пока достаточно обоснованных общепризнанных отдельных законов техники и нет еще даже в гипотезах полной замкнутой их системы. Создание такой системы, как и обоснование отдельных законов - одно из важнейших актуальных современных направлений фундаментальных исследований, относящихся к технозианию и общей теории проектирования. Это направление ждет своих энтузиастов-исследователей. Однако, в отличие от недавнего времени сегодня уже имеются теоретические и методические разработки по законам и закономерностям техники, которые представляют большой интерес для практического использования в инженерном творчестве. Законы техники, а также более частные и локальные закономерности могут иметь многоплановое приложение в инженерном творчестве. Во-первых, на основе законов и закономерностей техники могут быть разработаны наиболее эффективные методология и методы инженерного творчества. Во-вторых, привязка законов и закономерностей к конкретному классу ТО позволяет определить наиболее правильные структурные свойства, облик и характеристики ТО в следующих поколениях.

Глава 6. О роли красоты в инженерном творчестве и эстетической подготовке инженеров Часть 2. Методы инженерного творчества

Глава 7. Постановка и анализ задачи

Глава 8. Методы мозговой атаки

Глава 9. Метод эвритических приемов

Глава 10. Морфологический анализ и синтез технических решений

Глава 11. Автоматизированный синтез физических принципов действия

Глава 12. Автоматизированный синтез технических решений

Глава 13. Автоматизированный поиск оптимальных технических решений

Глава 14. Функционально-стоимостный анализ технических объектов

Заключение

Приложение

Список литературы

Алфавитно-предметный указатель

  • 707 просмотров

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССОНАЛЬНОГО ОБРАЗОВАНИЯ

ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

по дисциплине: Строительное и инженерное творчество

МЕТОДОЛОГИЯ ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

Составитель:

Степанков Алексей Петрович

1. Об инженерной деятельности

В современном обществе техническая деятельность весьма разнообразна, имеет широкий спектр различных реализаций от деятельности по заготовке сырья до упаковки и транспортировке произведенных товаров, от непосредственного участия рабочих в производственном процессе до творческой работы инженеров в конструкторских бюро.

Ныне техническая деятельность направлена на реализацию в процессе производства инженерных решений, а деятельность инженеров нацелена на проектирование, конструирование и эффективное функционирование техники, она является важным видом технической деятельности.

История утверждает, а археология подтверждает, что техника является настолько же древней, как и само человечество. Действительно, начало технической деятельности уходит в глубокое прошлое человеческой истории. Оно связано со становлением Homo sapiens - человека разумного и переходом от собирательства даров природы к преобразованию природных агентов в соответствии с потребностями человека и общества.

В этом - сущность специфики отношения человека к природе. Если животные относятся к природе пассивно, приспосабливаясь к ней, то человек имеет активное отношение к природе, видоизменяя ее, "приспосабливая" ее к удовлетворению своих потребностей.

Безусловно, человек присваивает определенные продукты природы - воду, воздух, мясо зверей и рыб, плоды и т. д.

Но главное что характерно для человека состоит в том, что он присваивает большинство продуктов природы в преобразованном им же виде. Преобразование природы человек реализует в процессе труда, который совершается между человеком и природой.

Именно в труде он своей собственной деятельностью регулирует и контролирует обмен веществ между собой и природой. Этот обмен протекает в ходе активной преобразующей технической деятельности человека. Истоки специфического отношения людей к природе, исследователи находят в далеком прошлом человеческого общества, в конце третичного и начале четвертичного периодов. На рубеже этих периодов примерно 2 миллиона лет назад биогеографическая среда, флора и фауна Земли под влиянием резкого потепления претерпела серьезные изменения: сократилась площадь лесов, образовались обширные пустынные области.

Темпы этих изменений были намного быстрее темпов биологической эволюции животных. Биологически приспособиться предкам человека к этому было невозможно. Появилась объективная необходимость в создании нового, более эффективного способа приспособления к новым природным условиям. Возможным оставалось одно - встать на путь "приспособления" природы к своим потребностям, т. е., перейти от пассивного отношения к природе к активному, т. е., «включить в работу» свой мозг.

Слово инженер произошло от латинского слова ingenium - хитроумный, остроумный, изобретательный. Словом "инженер" стали называть создателей некоторых военных машин во втором веке, а впоследствии - творцов всяких хитроумных устройств. Заметим, что параллельно появилось слово машина для обозначения подъемного устройства в древнегреческом театре.

В современном значении фигура инженера появляется в 18 веке с возникновением крупного машинного производства. Именно в конце 18 - начале 19 веков в Западной Европе начинается этап крупного машинного производства, основанный на сознательном применении науки в производственном процессе.

Инженер своей деятельностью, как бы соединяя науку с производством, становится проводником науки в производстве. Одновременно, о чем речь еще впереди, формируется особый класс наук - технические науки, которые соединяют научное познание с практикой.

Инженерная деятельность в современном ее понимании возникает когда развитие техники как способа деятельности уже не могло основываться только на производственных навыках, традиции, умении работников производства, а требовало целенаправленного использования научных знаний. Вместе с усложнением производственных процессов инженерная деятельность дифференцировалась на инженерно-исследовательскую, инженерно-конструкторскую и инженерно-технологическую.

Деятельность инженера в отличие от деятельности других слоев интеллигенции (педагогов, врачей, актеров, композиторов и др.) по своей роли в общественном производстве является производительным трудом, непосредственно участвующим в создании национального дохода. Тем самым инженеры вместе с учеными прокладывают путь человеческому обществу в будущее.

История вопроса.

Практическая направленность инженерной и вообще всей технической деятельности давала повод "интеллектуалам" смотреть на нее свысока.

Техническая деятельность не пользовалась особой славой еще в древности. Критика технической деятельности оказывается столь же древней, как и сама эта деятельность. Достаточно в этой связи вспомнить мифы о разрушении Богом Вавилонской башне, прикованном к кавказским скалам Прометее или упавшем с небес Икаре.

Плутарх оставил нам свидетельства о том, что сам Архимед считал сооружение машин занятием, не заслуживающим ни трудов, ни внимания, большинство из них появилось на свет как бы попутно, в виде забав геометрии и то потому, что царь Гиерон из честолюбия убедил Архимеда хоть не надолго отвлечь свое искусство от умозрений и обратить его на вещи осязаемые, в какой-то мере воплотить свою мысль, соединить ее с повседневными нуждами.

Отношение к технической деятельности принципиально не изменилось и в период средневековья, когда эта деятельность часто воспринималась как нечто магическое. И не только в силу существования строго секретного мастерства. В эпоху Возрождения сформировалось иное отношение к инженеру и его деятельности.

К инженеру стали относиться не просто как к ремесленнику, технику, а как к творцу, творящему подобно божественному творцу новый мир, мир второй природы. Несмотря на то, что при переходе к индустриализации в общественном сознании упрочняется мнение о прогрессивном значении опирающейся на науку инженерной деятельности, с конца 19 века начинается резкая критика технического засилья и идеализация прошлого.

Критика сегодня.

Чрезвычайно противоречивую оценку инженерной деятельности дает и современное общество, видя в ней не только источник жизненных благ, но и социального зла.

Внимание общественности к инженерной деятельности не случайно. Развитие техники - главнейшая составляющая общественного развития.

Инженерная деятельность выступает в роли основного источника технического прогресса. Именно в качественном преобразовании техники и технологии состоит главная функция инженеров.

Но, совершенствуя технику и технологию, инженеры влияют на изменение технологических отношений, т. е., тех отношений, которые складываются между людьми в ходе непосредственного производственного процесса и поэтому воздействуют на развитие главной производительной силы - на людей. Таким образом, инженерная деятельность занимает одно из центральных мест во всей системе технической деятельности.

Реальность сегодняшних дней.

Что представляет из себя инженерная деятельность?

Инженерная деятельность - это самостоятельный специфический вид технической деятельности всех научных и практических работников, занятых в сфере материального производства. В современной своей сущности инженерная деятельность - это техническое применение науки, направленное на производство техники и удовлетворение общественных технических потребностей. В процессе деятельности инженера законы науки из своей теоретической формы трансформируют в технические принципы, которые находят свое практическое применение. Поэтому по своему характеру инженерная деятельность является преимущественно духовной деятельностью в сфере материального производства. Основные ценностные критерии инженерной деятельности - это способность функционирования и надежность, экономичность, благосостояние, здоровье, безопасность, экологичность, качество общества и развитие личности.

Структура инженерной деятельности определяется решением возникших технических проблем, которые появляются при отсутствии технических средств для решения стоящих перед обществом задач. В процессе инженерной деятельности осуществляется переход от общественных технических потребностей и знаний о технике к созданию техники и технологии. Элементами такого процесс в совокупности образующих структуру инженерной деятельности являются определенные потребности, выработка и принятие решения, подготовка производства, регулирование производства, удовлетворение потребностей.

Во внутренней структуре технической деятельности первой стадией будет изобретение, затем - проектирование в ходе которого идеальная модель воплощается в рабочих чертежах, конструирование - материальное воплощение изобретения в техническом устройстве и, наконец, промышленное освоение и внедрение в производство.

Существенные признаки инженерной деятельности - это деятельность в сфере материального производства или деятельность, которая направлена на решение задач материального производства. Отсюда - техническая направленность инженерного труда.

Цель инженерной деятельности заключена в создании техники, технологии и эффективного их использования в системе общественного производства. Вне этого инженер лишен предмета своей деятельности.

Можно считать совершенно неоправданным расширительное понятие инженерной деятельности, которое все чаще встречается в быту. Инженер-экономист, инженер по охране труда и подобные им "инженеры" являются просто недоразумением, вытекающем из непонимания самой сущности инженерной деятельности как обособленное целеполагание в сфере создания техники. В процессе своей деятельности инженер активно включается во взаимодействие с процессами развития и функционирования техники. В силу указанного обстоятельства инженерная деятельность является практической, т. е., имеет дело с реально существующими объектами в отличие от теоретической или духовной, где существуют мыслимые, идеальные объекты. Но, как известно, практическая деятельность подразделяется на материально-производственную (преобразование природы) и социально-преобразовательную (преобразование общества).

Инженерная деятельность, безусловно, относится к материально-производственной.

Инженер занимает промежуточное положение между теорией и практикой, его труд является умственным трудом в сфере материального производства. На свои способы действия он смотрит не как ремесленник и не как ученый-естествоиспытатель.

В процессе применения открытых естественными науками законов для проектирования, конструирования, функционирования и совершенствования техники и технологии эти законы нужно не только модифицировать в форму возможную для этого применения, но и воплотить их в новой технике и технологии. Этот процесс является наиболее трудным, ответственным и интересным в инженерной деятельности. Именно он придает этой деятельности творческий характер. Творчество - одна из важнейших характеристик инженерной деятельности. В процесс своей деятельности инженер материализует творческий характер своего труда, Для достижения своей цели инженер использует различные законы природы, открываемые естественными науками, и их различную модификацию. Один и тот же материальный результат может быть получен различными техническими способами. Так, обработка деталей осуществляется различным путем - механическим, химическим, лазерным и др.

Все эти обстоятельства свидетельствуют, что в области инженерного творчества существует большая свобода выбора, в этой деятельности имеются многозначные конкретные техническо-технологические решения. В силу этих обстоятельств инженерная деятельность отличается высокой степенью интеллектуального творчества.

В самом деле, часто говорят о творчестве артистов, писателей, художников, композиторов. Но разве меньше нужно затратить творческих усилий инженеру, чтобы материализовать предельно оптимально при огромном выборе технических возможностей ту идеальную модель, которую создал в своей голове инженер?

2. Технология инженерного профессионального процесса в настоящее время

Творчество инженера имеет определенную структуру и определяемые этой структурой этапы развития. Структурными элементами инженерного творчества являются:

Отражение и осмысление технической потребности как проблемы технического прогресса;

Вынашивание новой технической идеи;

Разработка идеальной модели технического устройства;

Конструирование - переход от идеальной модели к созданию нового технического устройства на основе математических и технических расчетов;

Создание нового промышленного образца.

Технологию инженерной профессиональной деятельности - технологию технического творчества можно представить в виде последовательных, но функционально объединенных между собой этапов.

Первый этап - критическое осмысление существующего положения вещей на базе экспериментальных материалов и логических рассуждений, формирование проблемной ситуации. Результатом этого этапа является формулировка конкретной технической задачи, которая может стать основой дальнейших творческих поисков.

Второй этап - этап генерирование (рождение) и «продумывания» новой технической идеи как результата скачка в новое качество при реализации поиска решения определенной технической задачи. Это еще не техническое изобретение и не идеальная модель нового, но уже выход за рамки непосредственно данного. С этой целью применяется набор методов инженерного поиска идей. При этом рациональные методы, составляющие логическую основу процесса, не исключают действия фантазии и интуиции при рождении технической идеи.

Третий этап - этап разработки воображаемой реальности идеальной модели как результата схематизации новой технической идеи, как структурной и функциональной схемы будущего технического объекта. В идеальной модели выражается активная созидательная деятельность субъекта, учитывается необходимость ее последующей материализации, строится будущий объект не в чувственно воспринимаемой форме. На этом этапе протекает процесс обоснования, продумывания и создания образца будущего технического объекта.

Четвертый этап - этап конструирования, перехода от мысленного построения к реальным разработкам. Результаты конструирования выражаются в эскизном и техническом проектах, в рабочих чертежах или модельно-макетном воплощении. Начинается разрешение противоречий между материальным и идеальным, теорией и практикой. Происходит движение от изобретения в форме идеальной модели или патента до рабочих чертежей или спецификаций и далее - до действующих моделей, экспериментальных или производственных образцов.

Пятый этап - этап воплощения изобретения в новом техническом объекте. Этот этап складывается из ряда стадий.

На начальной его стадии создается экспериментальный образец, который предоставляет на основе данных экспериментов сделать доработку и доводку конструкторско-технологических разработок. Затем для испытаний артефактов в промышленных условиях создается промышленный образец. И, наконец, новая техника и технология запускается в серийное или массовое производство. На этом этапе завершается процесс разрешения противоречий между теорией и практикой и одновременно возникают новые технические задачи, новые противоречия.

Как видим, все этапы инженерной деятельности пронизаны творчеством. Творческий характер деятельности инженера проявляется прежде всего в том, что он сознательно формирует цель своей деятельности на основе осмысления технических потребностей производства и общества в целом. Его деятельность является целеполагающейся.

Целеполагание представляет собой сложный диалектический процесс отражения настоящего и потребностей будущего.

Оно возникает благодаря способности человеческого сознания к воображению и является идеальным аналогом последующей материальной деятельности субъекта.

Инженерное творчество реализует выход за пределы существующего состояния техники и технологии.

Можно заключить, что инженерная деятельность - это деятельность в сфере материального производства, имеющая техническую направленность. Она нацелена на превращение природного в социально значимое с целью удовлетворения определенных потребностей людей, в силу чего сама техника выступает как преодоление природы посредством человеческого сознания.

Инженерная деятельность аккумулирует производственный опыт и использует научные знания, отличается высокой степенью интеллектуального творчества, протекает преимущественно в социальной среде и зависима от внешних, социокультурных факторов.

Отмеченные характерные черты инженерного творчества проявляются в различной степени в те или иные периоды ее исторического развития. Для современного этапа инженерного творчества и вообще инженерной деятельности особенно характерна их связь с научной деятельностью, которая имеет солидную историческую традицию.

3. Поисковое конструирование или методы технического (инженерного) творчества

Методы технического (инженерного) творчества подразделяются на две группы. Эвристические методы технического творчества, основаны на использовании достаточно четко описанных методик и правил поиска новых технических решений. Эти методы начали разрабатывать еще с древних времен, особое внимание им уделили выдающиеся ученые XVII-XVIII вв. Ф. Бэкон, Р. Декарт и Г. Лейбниц. Начиная с 40-х гг. прошлого столетия резко возросли исследования и разработки по созданию и применению эвристических методов, методик, приемов, принципов, правил и т. п.

В настоящее время известно более 100 эвристических методов, методик, подходов и их модификаций (подробнее о некоторых из них см. на нашем сайте). Компьютерные методы поискового конструирования, основаны на использовании ЭВМ в решении творческих инженерных задач. Эти методы начали разрабатывать и применять в 60-х годах. В настоящее время известны десятки различных подходов и методов поискового конструирования. Как считают опытные методисты, нецелесообразно отдавать предпочтение какому-либо одному методу или стараться освоить все имеющиеся подходы и методы.

Специалист на первом этапе или на первой ступени овладения методами инженерного творчества должен научиться свободно пользоваться небольшим набором из трех-пяти методов.

Дальнейшее повышение эффективности деятельности творчески работающего инженера связано с приобретением собственного опыта и расширением набора используемых методов и систем методов решения творческих инженерных задач. технический творчество инженер

Какие принципиальные отличия имеют эвристические методы технического творчества и методы поискового конструирования?

В 1977 г. было проведено условное разделение между эвристическими и компьютерными методами (с помощью первых решают задачи технического творчества, с помощью вторых - задачи поискового конструирования). К задачам технического творчества были традиционно отнесены такие, при которых человек решает поставленную задачу способом "проб и ошибок" или с помощью эвристических методов без использования ЭВМ. К задачам поискового конструирования отнесены такие творческие инженерные задачи, которые человек решает с использованием ЭВМ.

Если бы все задачи поискового конструирования одновременно можно было решать с помощью эвристических методов, то, конечно, не имело бы смысла их особо выделять. Однако, как показали не только теория, но и практика, множество задач технического творчества не включает в себя полностью множество задач поискового конструирования, а только пересекаются с ним, т. е., существует некоторое подмножество задач поискового конструирования, которые человек не может решить без ЭВМ или решение их без машинной поддержки (при эквивалентном результате) вызывает значительные трудности.

Это непосильные для естественного интеллекта творческие задачи. Особенно это относится к задачам, решение которых требует применения новых физических принципов действия, затруднительных для мысленного моделирования, а также таким сверхсложным техническим проблемам, о которых человек без ЭВМ уже не может иметь цельного и ясного представления. Число подобных задач со временем будет расти, что и оправдывает выделение специальных методов поискового конструирования в особую группу и заставляет стимулировать их развитие.

Современный уровень развития компьютерной техники и новые разработки в области управления знаниями позволили создать программное обеспечение, способное вывести методы поискового конструирования на качественно новый уровень интеллектуальных изобретательских технологий. Каждая творческая задача или задание имеет свой метод решения, состоящий из набора известных и неизвестных приёмов и методов, так как в процессе жизнедеятельности человека постоянно меняются производственные условия, цели, а, следовательно, и задачи.

Размещено на Allbest.ru

Подобные документы

    Основные технико-экономические показатели инженерного обустройства. Вертикальная планировка рельефа. Проектирование канализации и очистных сооружений. Инженерное обустройство селитебной зоны. Анализ рельефа и гидрологии. Анализ территории Уярского района.

    курсовая работа , добавлен 04.05.2010

    Техническое обслуживание, реконструкция, капитальный ремонт и наладка инженерного оборудования: центральных и индивидуальных тепловых пунктов, систем отопления, горячего водоснабжения с подачей теплоносителя, систем вентиляции; оформление результатов.

    курсовая работа , добавлен 21.10.2011

    Разработка проекта строительства детско-юношеской школы творчества общей площадью до 2000 квадратных метров. Рассмотрение объемно-пространственной структуры здания, проведение архитектурных расчетов. Составление генерального плана строительства объекта.

    дипломная работа , добавлен 30.06.2012

    Общая характеристика генерального плана строительства коровника на 200 коров привязного содержания. Объемно-планировочное решение. Характеристика основных конструктивных элементов здания. Проектирование санитарно-технического и инженерного оборудования.

    курсовая работа , добавлен 28.12.2014

    Биография Николая Белелюбского - выдающегося инженера, проектировщика и строителя мостов. Начало преподавательской и инженерной деятельности. Вершина и финал деятельности ученого - Романовский мост. Проектировка металлических пролётных строений.

    реферат , добавлен 05.05.2015

    Анализ многоквартирного жилого дома. Сущность понятия "архитектурное наследие". Особенности определения фактического технического состояния несущих строительных конструкций и инженерного оборудования здания. Виды экспертиз: техническая, экологическая.

    дипломная работа , добавлен 15.12.2012

    Природно-климатические и хозяйственные условия территории. Месторасположение участка. Анализ существующих транспортных связей. Построение "веревочного" многоугольника. Техническое проектирование участка: план трассы, поперечный и продольный профиль.

    курсовая работа , добавлен 11.12.2012

    Характеристика и разновидности строительных элементов санитарно-технического и инженерного оборудования: печи и дымовые трубы, отопление и вентиляция. Классификация крыш, их конструктивные и функциональные особенности. Виды междуэтажных перекрытий.

    контрольная работа , добавлен 03.04.2010

    Мис ван дер Роэ - немецкий архитектор-модернист, ведущий представитель "интернационального стиля", художник, определивший облик городской архитектуры в XX веке: становление; работа в Германии и США; экспрессионизм в творчестве; Чикагские небоскребы.

    реферат , добавлен 06.05.2011

    Определение фактического технического состояния несущих строительных конструкций и инженерного оборудования здания. Изучение нормативно-правовых актов, регулирующих сферу ЖКХ и деятельность федеральных органов исполнительной власти. Расчет износа здания.

2024 english-speak.ru. Изучение английского языка.