Степени числа 2 от 0 до 10. Максимальное число со знаком. Что такое натуральная степень числа

Давайте рассмотрим последовательность чисел, первое из которых равно 1, а каждое последующее вдвое больше: 1, 2, 4, 8, 16, ... Используя показатели степени, ее можно записать в эквивалентном виде: 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , ... Называется она вполне ожидаемо: последовательность степеней двойки. Казалось бы, ничего выдающегося в ней нет - последовательность как последовательность, не лучше и не хуже других. Тем не менее, она обладает весьма примечательными свойствами.

Несомненно, многие читатели встречали ее в классической истории об изобретателе шахмат, который попросил у правителя в награду за первую клетку шахматной доски одно пшеничное зерно, за вторую - два, за третью - четыре, и так далее, всё время удваивая число зерен. Понятно, что суммарное их количество равно

S = 2 0 + 2 1 + 2 2 + 2 3 + 2 4 + ... + 2 63 . (1)

Но так как эта сумма неимоверно велика и во много раз превосходит годовой урожай зерновых по всему миру, вышло, что мудрец ободрал правителя как липку.

Однако зададимся сейчас другим вопросом: как с наименьшими затратами труда подсчитать величину S ? Обладатели калькулятора (или, паче того, компьютера) вполне могут за обозримое время выполнить перемножения, а затем сложить полученные 64 числа, получив ответ: 18 446 744 073 709 551 615. А поскольку объем вычислений немалый, то и вероятность ошибки весьма велика.

Кто похитрей, могут углядеть в этой последовательности геометрическую прогрессию . Не знакомые же с этим понятием (или те, кто попросту забыл стандартную формулу суммы геометрической прогрессии) могут использовать следующие рассуждения. Давайте-ка умножим обе части равенства (1) на 2. Так как при удвоении степени двойки ее показатель увеличивается на 1, то получим

2S = 2 1 + 2 2 + 2 3 + 2 4 + ... + 2 64 . (2)

Теперь из (2) вычтем (1). В левой части, понятное дело, получится 2S S = S . В правой же части произойдет массовое взаимное уничтожение почти всех степеней двойки - от 2 1 до 2 63 включительно, и останется лишь 2 64 – 2 0 = 2 64 – 1. Итак:

S = 2 64 – 1.

Что ж, выражение заметно упростилось, и теперь, имея калькулятор, позволяющий возводить в степень, можно найти значение этой величины без малейших проблем.

А если и калькулятора нет - как быть? Перемножать в столбик 64 двойки? Еще чего не хватало! Опытный инженер или математик-прикладник, для которого главный фактор - время, сумел бы быстро оценить ответ, т.е. найти его приближенно с приемлемой точностью. Как правило, в быту (да и в большинстве естественных наук) вполне допустима погрешность в 2–3%, а если она не превосходит 1% - то это просто великолепно! Оказывается, подсчитать наши зерна с такой погрешностью можно вообще без калькулятора, и всего за несколько минут. Как? Сейчас увидите.

Итак, надо возможно точней найти произведение 64 двоек (единицу в силу ее ничтожности отбросим сразу). Разобьем их на отдельную группу из 4 двоек и еще на 6 групп по 10 двоек. Произведение двоек в отдельной группе равно 2 4 = 16. А произведение 10 двоек в каждой из остальных групп равно 2 10 = 1024 (убедитесь, кто сомневается!). Но 1024 - это около 1000, т.е. 10 3 . Поэтому S должно быть близко к произведению числа 16 на 6 чисел, каждое из которых равно 10 3 , т.е. S ≈ 16·10 18 (ибо 18 = 3·6). Правда, погрешность здесь все же великовата: ведь 6 раз при замене 1024 на 1000 мы ошибались в 1,024 раза, а всего мы ошиблись, как легко видеть, в 1,024 6 раз. Так что теперь - дополнительно перемножать 1,024 шесть раз само на себя? Нет уж, обойдемся! Известно, что для числа х , которое во много раз меньше 1, с высокой точностью справедлива следующая приближенная формула: (1 + x ) n ≈ 1 + xn .

Поэтому 1,024 6 = (1 + 0,24) 6 1 + 0,24·6 = 1,144. Посему надо найденное нами число 16·10 18 умножить на число 1,144, в результате чего получится 18 304 000 000 000 000 000, а это отличается от правильного ответа менее чем на 1%. Чего мы и добивались!

В данном случае нам крупно повезло: одна из степеней двойки (а именно - десятая) оказалась весьма близка к одной из степеней десятки (а именно - третьей). Это позволяет нам быстро оценивать значение любой степени двойки, не обязательно 64-й. Среди степеней других чисел подобное встречается нечасто. Например, 5 10 отличается от 10 7 также в 1,024 раза, но... в меньшую сторону. Впрочем, это того же поля ягода: поскольку 2 10 ·5 10 = 10 10 , то во сколько раз 2 10 превосходит 10 3 , во столько же раз 5 10 меньше , чем 10 7 .

Другая интересная особенность рассматриваемой последовательности заключается в том, что любое натуральное число можно построить из различных степеней двойки, причем единственным способом. Например, для номера текущего года имеем

2012 = 2 2 + 2 3 + 2 4 + 2 6 + 2 7 + 2 8 + 2 9 + 2 10 .

Доказать эти возможность и единственность не составляет особого труда. Начнем с возможности. Пусть нам надо представить в виде суммы различных степеней двойки некоторое натуральное число N . Сначала запишем его в виде суммы N единиц. Так как единица - это 2 0 , то первоначально N есть сумма одинаковых степеней двойки. Затем начнем объединять их по парам. Сумма двух чисел, равных 2 0 , - это 2 1 , так что в результате получится заведомо меньшее количество слагаемых, равных 2 1 , и, возможно, одно число 2 0 , если ему не нашлось пары. Далее попарно объединяем одинаковые слагаемые 2 1 , получая еще меньшее количество чисел 2 2 (здесь тоже возможно появление непарной степени двойки 2 1). Затем снова объединяем равные слагаемые попарно, и так далее. Рано или поздно процесс завершится, ибо количество одинаковых степеней двойки после каждого объединения уменьшается. Когда оно станет равным 1 - дело кончено. Осталось сложить все получившиеся непарные степени двойки - и представление готово.

Что касается доказательства единственности представления, то здесь хорошо подходит метод «от противного». Пусть одно и то же число N удалось представить в виде двух наборов различных степеней двойки, которые не полностью совпадают (т. е. имеются степени двойки, входящие в один набор, но не входящие в другой, и наоборот). Для начала отбросим все совпадающие степени двойки из обоих наборов (если таковые имеются). Получатся два представления одного и того же числа (меньшего или равного N ) в виде суммы различных степеней двойки, причем все степени в представлениях различны . В каждом из представлений выделим наибольшую степень. В силу изложенного выше, для двух представлений эти степени различны . То представление, для которого эта степень больше, назовем первым , другое - вторым . Итак, пусть в первом представлении наибольшая степень равна 2 m , тогда во втором она, очевидно, не превышает 2 m –1 . Но поскольку (и мы с этим уже сталкивались выше, подсчитывая зерна на шахматной доске) справедливо равенство

2 m = (2 m –1 + 2 m –2 + ... + 2 0) + 1,

то 2 m строго больше суммы всех степеней двойки, не превосходящих 2 m –1 . По этой причине уже наибольшая степень двойки, входящая в первое представление, наверняка больше суммы всех степеней двойки, входящих во второе представление. Противоречие!

Фактически мы только что обосновали возможность записи чисел в двоичной системе счисления. Как известно, в ней используются лишь две цифры - ноль и единица, и каждое натуральное число записывается в двоичной системе единственным способом (например, упомянутое выше 2012 - как 11 111 011 100). Если пронумеровать разряды (двоичные цифры) справа налево, начиная с нуля, то номера тех разрядов, в которых стоят единицы, как раз и будут показателями степеней двоек, входящих в представление.

Менее известно следующее свойство множества целых неотрицательных степеней двойки. Давайте некоторым из них произвольным образом присвоим знак «минус», т. е. из положительных сделаем отрицательными. Единственное требование - чтобы в результате и положительных, и отрицательных чисел оказалось бесконечное количество. Например, можно присвоить знак «минус» каждой пятой степени двойки или, допустим, оставить положительными только числа 2 10 , 2 100 , 2 1000 , и так далее - вариантов здесь сколько угодно.

Как ни удивительно, но любое целое число можно (и притом единственным способом) представить в виде суммы различных слагаемых нашей «положительно-отрицательной» последовательности. И доказать это не очень-то сложно (например, индукцией по показателям степеней двоек). Главная идея доказательства - наличие сколь угодно больших по абсолютной величине как положительных, так и отрицательных слагаемых. Попробуйте выполнить доказательство сами.

Интересно понаблюдать за последними цифрами членов последовательности степеней двойки. Так как каждое последующее число последовательности получается удвоением предыдущего, то последняя цифра каждого из них полностью определяется последней цифрой предыдущего числа. А так как различных цифр ограниченное количество, последовательность последних цифр степеней двойки просто обязана быть периодической! Длина периода, естественно, не превышает 10 (поскольку именно столько цифр мы используем), но это сильно завышенное значение. Попробуем оценить его, не выписывая пока саму последовательность. Ясно, что последние цифры всех степеней двойки, начиная с 2 1 , четные . Кроме того, среди них не может быть нуля - потому что число, оканчивающееся нулем, делится на 5, в чем заподозрить степени двойки никак нельзя. А так как четных цифр без нуля имеется всего четыре, то и длина периода не превосходит 4.

Проверка показывает, что так оно и есть, причем периодичность проявляется почти сразу: 1, 2, 4, 8, 6, 2, 4, 8, 6, ... - в полном соответствии с теорией!

Не менее успешно можно оценить и длину периода последней пары цифр последовательности степеней двойки. Так как все степени двойки, начиная с 2 2 , делятся на 4, то и числа, образованные их последними двумя цифрами, делятся на 4. Не более чем двузначных чисел, делящихся на 4, имеется всего 25 (для однозначных чисел предпоследней цифрой считаем ноль), но из них надо выбросить пять чисел, оканчивающихся нулем: 00, 20, 40, 60 и 80. Так что период может содержать не более 25 – 5 = 20 чисел. Проверка показывает, что так и есть, начинается период с числа 2 2 и содержит пары цифр: 04, 08, 16, 32, 64, 28, 56, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88, 76, 52, а затем опять 04 и так далее.

Аналогично можно доказать, что длина периода последних m цифр последовательности степеней двойки не превышает 4·5 m –1 (более того - на самом деле она равна 4·5 m –1 , но доказать это значительно сложнее).

Итак, на последние цифры степеней двойки наложены довольно жесткие ограничения. А как насчет первых цифр? Здесь ситуация практически противоположная. Оказывается, для любого набора цифр (первая из которых - не ноль) найдется степень двойки, начинающаяся с этого набора цифр. И таких степеней двойки бесконечно много! Например, существует бесконечное количество степеней двойки, начинающихся с цифр 2012 или, скажем, 3 333 333 333 333 333 333 333.

А если рассмотреть только одну самую первую цифру различных степеней двойки - какие значения она может принимать? Нетрудно убедиться, что любые - от 1 до 9 включительно (нуля среди них, естественно, нет). Но какие из них встречаются чаще, а какие реже? Как-то сразу не видно причин, по которым одна цифра должна встречаться чаще другой. Однако более глубокие размышления показывают, что как раз равной встречаемости цифр ожидать не приходится. Действительно, если первая цифра какой-либо степени двойки есть 5, 6, 7, 8 или 9, то первая цифра следующей за ней степени двойки будет обязательно единицей! Поэтому должен иметь место «перекос», по крайней мере, в сторону единицы. Следовательно, вряд ли и остальные цифры будут «равнопредставленными».

Практика (а именно - прямой компьютерный расчет для первых нескольких десятков тысяч степеней двойки) подтверждает наши подозрения. Вот какова относительная доля первых цифр степеней двойки с округлением до 4 знаков после запятой:

1 - 0,3010
2 - 0,1761
3 - 0,1249
4 - 0,0969
5 - 0,0792
6 - 0,0669
7 - 0,0580
8 - 0,0512
9 - 0,0458

Как видим, с ростом цифр эта величина убывает (и потому та же единица примерно в 6,5 раз чаще бывает первой цифрой степеней двойки, чем девятка). Как ни покажется странным, но практически такое же соотношение количеств первых цифр будет иметь место почти для любой последовательности степеней - не только двойки, но, скажем, и тройки, пятерки, восьмерки и вообще почти любого числа, в том числе и нецелого (исключение составляют лишь некоторые «особые» числа). Причины этого весьма глубоки и непросты, и для их уяснения надо знать логарифмы. Для тех, кто с ними знаком, приоткроем завесу: оказывается, относительная доля степеней двойки , десятичная запись которых начинается с цифры F (для F = 1, 2, ..., 9), составляет lg (F + 1) – lg (F ), где lg - так называемый десятичный логарифм, равный показателю степени, в которую надо возвести число 10, чтобы получить число, стоящее под знаком логарифма.

Используя упомянутую выше связь между степенями двойки и пятерки, А. Канель обнаружил интересное явление. Давайте из последовательности первых цифр степеней двойки (1, 2, 4, 8, 1, 3, 6, 1, 2, 5, ...) выберем несколько цифр подряд и запишем их в обратном порядке. Оказывается, эти цифры непременно встретятся тоже подряд , начиная с некоторого места, в последовательности первых цифр степеней пятерки.

Степени двойки также являются своеобразным «генератором» для производства широко известных совершенных чисел , которые равны сумме всех своих делителей, за исключением себя самого. Например, у числа 6 четыре делителя: 1, 2, 3 и 6. Отбросим тот, который равен самому числу 6. Осталось три делителя, сумма которых как раз равна 1 + 2 + 3 = 6. Поэтому 6 - совершенное число.

Для получения совершенного числа возьмем две последовательные степени двойки: 2 n –1 и 2 n . Уменьшим большую из них на 1, получим 2 n – 1. Оказывается, если это - простое число, то, домножив его на предыдущую степень двойки, мы образуем совершенное число 2 n –1 (2 n – 1). Например, при п = 3 получаем исходные числа 4 и 8. Так как 8 – 1 = 7 - простое число, то 4·7 = 28 - совершенное число. Более того - в свое время Леонард Эйлер доказал, что все четные совершенные числа имеют именно такой вид. Нечетные совершенные числа пока не обнаружены (и мало кто верит в их существование).

Тесную связь имеют степени двойки с так называемыми числами Каталана , последовательность которых имеет вид 1, 1, 2, 5, 14, 42, 132, 429... Они часто возникают при решении различных комбинаторных задач. Например, сколькими способами можно разбить выпуклый n -угольник на треугольники непересекающимися диагоналями? Всё тот же Эйлер выяснил, что это значение равно (n – 1)-му числу Каталана (обозначим его K n –1), и он же выяснил, что K n = K n –1 ·(4n – 6)/n . Последовательность чисел Каталана имеет множество любопытных свойств, и одно из них (как раз связанное с темой этой статьи) заключается в том, что порядковые номера всех нечетных чисел Каталана являются степенями двойки!

Степени двойки нередко встречаются в различных задачах, причем не только в условиях, но и в ответах. Возьмем, например, популярную когда-то (да и поныне не забытую) Ханойскую башню . Так называлась игра-головоломка, придуманная в XIX веке французским математиком Э. Люка. Она содержит три стержня, на один из которых надето n дисков с отверстием в середине каждого. Диаметры всех дисков различны, и они расположены в порядке убывания снизу вверх, т. е. самый большой диск - внизу (см. рисунок). Получилась как бы башня из дисков.

Требуется перенести эту башню на другой стержень, соблюдая такие правила: перекладывать диски строго по одному (снимая верхний диск с любого стержня) и всегда класть только меньший диск на больший, но не наоборот. Спрашивается: какое наименьшее число ходов для этого потребуется? (Ходом мы называем снятие диска с одного стержня и надевание его на другой.) Ответ: оно равно 2 n – 1, что легко доказывается по индукции.

Пусть для n дисков потребное наименьшее число ходов равно X n . Найдем X n +1 . В процессе работы рано или поздно придется снимать самый большой диск со стержня, на который первоначально были надеты все диски. Так как этот диск можно надевать только на пустой стержень (иначе он «придавит» меньший диск, что запрещено), то все верхние n дисков придется предварительно перенести на третий стержень. Для этого потребуется не меньше X n ходов. Далее переносим наибольший диск на пустой стержень - вот еще один ход. Наконец, чтобы сверху его «притиснуть» меньшими n дисками, опять потребуется не меньше X n ходов. Итак, X n +1 ≥ X n + 1 + X n = 2X n + 1. С другой стороны, описанные выше действия показывают, как можно справиться с задачей именно 2X n + 1 ходами. Поэтому окончательно X n +1 =2X n + 1. Получено рекуррентное соотношение, но для того чтобы его привести к «нормальному» виду, надо еще найти X 1 . Ну, это проще простого: X 1 = 1 (меньше просто не бывает!). Не составляет труда, основываясь на этих данных, выяснить, что X n = 2 n – 1.

Вот еще одна интересная задача:

Найдите все натуральные числа, которые нельзя представить в виде суммы нескольких (не менее двух) последовательных натуральных чисел.

Давайте проверим сначала наименьшие числа. Ясно, что число 1 в указанном виде непредставимо. Зато все нечетные, которые больше 1, представить, конечно, можно. В самом деле, любое нечетное число, большее 1, можно записать как 2k + 1 (k - натуральное), что есть сумма двух последовательных натуральных чисел: 2k + 1 = k + (k + 1).

А как обстоят дела с четными числами? Легко убедиться, что числа 2 и 4 нельзя представить в требуемом виде. Может, и для всех четных чисел так? Увы, следующее же четное число опровергает наше предположение: 6 = 1 + 2 + 3. Зато число 8 опять не поддается. Правда, следующие числа вновь уступают натиску: 10 = 1 + 2 + 3 + 4, 12 = 3 + 4 + 5, 14 = 2 + 3 + 4 + 5, а вот 16 - вновь непредставимо.

Что ж, накопленная информация позволяет сделать предварительные выводы. Обратите внимание: не удалось представить в указанном виде только степени двойки . Верно ли это для остальных чисел? Оказывается, да! В самом деле, рассмотрим сумму всех натуральных чисел от m до n включительно. Так как всего их, по условию, не меньше двух, то n > m . Как известно, сумма последовательных членов арифметической прогрессии (а ведь именно с ней мы имеем дело!) равна произведению полусуммы первого и последнего членов на их количество. Полусумма равна (n + m )/2, а количество чисел равно n m + 1. Поэтому сумма равна (n + m )(n m + 1)/2. Заметим, что в числителе находятся два сомножителя, каждый из которых строго больше 1, и при этом четность их - различна. Выходит, что сумма всех натуральных чисел от m до n включительно делится на нечетное число, большее 1, и потому не может быть степенью двойки. Так что теперь понятно, почему не удалось представить степени двойки в нужном виде.

Осталось убедиться, что не степени двойки представить можно. Что касается нечетных чисел, то с ними мы уже разобрались выше. Возьмем какое-либо четное число, не являющееся степенью двойки. Пусть наибольшая степень двойки, на которую оно делится, это 2 a (a - натуральное). Тогда если число поделить на 2 a , получится уже нечетное число, большее 1, которое мы запишем в знакомом виде - как 2k + 1 (k - тоже натуральное). Значит, в целом наше четное число, не являющееся степенью двойки, равно 2 a (2k + 1). А теперь рассмотрим два варианта:

  1. 2 a +1 > 2k + 1. Возьмем сумму 2k + 1 последовательных натуральных чисел, среднее из которых равно 2 a . Легко видеть, что тогда наименьшее из них равно 2 a – k , а наибольшее равно 2 a + k , причем наименьшее (и, значит, все остальные) - положительное, т. е. действительно натуральное. Ну, а сумма, очевидно, составляет как раз 2 a (2k + 1).
  2. 2 a +1 < 2k + 1. Возьмем сумму 2 a +1 последовательных натуральных чисел. Здесь нельзя указать среднее число, ибо количество чисел четное, но указать пару средних чисел можно: пусть это числа k и k + 1. Тогда наименьшее из всех чисел равно k + 1 – 2 a (и тоже положительное!), а наибольшее равно k + 2 a . Сумма их тоже равна 2 a (2k + 1).

Вот и всё. Итак, ответ: непредставимые числа - это степени двойки, и только они.

А вот еще одна задача (впервые ее предложил В. Произволов, но в несколько иной формулировке):

Садовый участок окружен сплошным забором из N досок. Согласно приказу тети Полли Том Сойер белит забор, но по собственной системе: продвигаясь всё время по часовой стрелке, сначала белит произвольную доску, затем пропускает одну доску и белит следующую, затем пропускает две доски и белит следующую, затем пропускает три доски и белит следующую, и так далее, каждый раз пропуская на одну доску больше (при этом некоторые доски могут быть побелены несколько раз - Тома это не смущает).

Том считает, что при такой схеме рано или поздно все доски будут побелены, а тетя Полли уверена, что хотя бы одна доска останется непобеленной, сколько бы Том ни работал. При каких N прав Том, а при каких - тетя Полли?

Описанная система побелки представляется довольно хаотичной, поэтому первоначально может показаться, что для любого (или почти любого) N каждой доске когда-нибудь достанется своя доля известки, т. е., в основном , прав Том. Но первое впечатление обманчиво, потому что на самом деле Том прав только для значений N , являющихся степенями двойки. Для остальных N найдется доска, которая так и останется навеки непобеленной. Доказательство этого факта довольно громоздко (хотя, в принципе, несложно). Предлагаем читателю выполнить его самому.

Вот каковы они - степени двойки. С виду - проще простого, а как копнешь... И затронули мы здесь далеко не все удивительные и загадочные свойства этой последовательности, а лишь те, что бросились в глаза. Ну, а читателю предоставляется право самостоятельно продолжить исследования в этой области. Несомненно, они окажутся плодотворными.

Нулевое их количество).
И не только двойки, как было отмечено ранее!
Жаждущие подробностей могут прочесть статью В. Болтянского «Часто ли степени двойки начинаются с единицы?» («Квант» №5 за 1978 г.), а также статью В. Арнольда «Статистика первых цифр степеней двойки и передел мира» («Квант» №1 за 1998 г.).
См. задачу М1599 из «Задачника «Кванта» («Квант» №6 за 1997 г.).
В настоящее время известны 43 совершенных числа, наибольшее из которых равно 2 30402456 (2 30402457 – 1). Оно содержит свыше 18 миллионов цифр.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.

Калькулятор степеней

Возвести в степень

Возведений в степень: 20880

Что такое натуральная степень числа?

Число p называют n -ой степенью числа a , если p равно числу a , умноженному само на себя n раз: p = a n = a·...·a
n - называется показателем степени , а число a - основанием степени .

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1 . Возвести число три в четвёртую степень. То есть необходимо вычислить 3 4
Решение : как было сказано выше, 3 4 = 3·3·3·3 = 81 .
Ответ : 3 4 = 81 .

Пример 2 . Возвести число пять в пятую степень. То есть необходимо вычислить 5 5
Решение : аналогично, 5 5 = 5·5·5·5·5 = 3125 .
Ответ : 5 5 = 3125 .

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Что такое отрицательная степень числа?

Отрицательная степень -n числа a - это единица, поделённая на a в степени n: a -n = .

При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1 . Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2 -4

Решение : как было сказано выше, 2 -4 = = = 0.0625 .

Ответ : 2 -4 = 0.0625 .

2024 english-speak.ru. Изучение английского языка.