Какой бывает ход качественного анализа пример. Качественный химический анализ. Химический и физико-химический анализ

. Цель, возможные методы. Качественный химический анализ неорганических и органических веществ

Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества (гл. 2.1), в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I 2 и наоборот.

Качественный анализ всегда предшествует количественному.

В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO 4 . При этом растворы теряют окраску.

Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.

При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.

Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.

К химическим реакциям в качественном анализе предъявляют следующие требования.

1. Реакция должна протекать практически мгновенно.

2. Реакция должна быть необратимой.

3. Реакция должна сопровождаться внешним эффектом (АС):

а) изменением окраски раствора;

б) образованием или растворением осадка;

в) выделением газообразных веществ;

г) окрашиванием пламени и др.

4. Реакция должна быть чувствительной и по возможности специфичной.

Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими , а добавляемое для этого вещество - реагентом . Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем », а в растворах - «мокрым путем ».

К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.

Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см 3 . Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.

Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.

Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической , когда позволяет обнаружить один ион в присутствии всех остальных. Специфической, например, на ион аммония является реакция:

NH 4 Cl + KOH  NH 3  + KCl + H 2 O

Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.

Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.

Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.

Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H 2 S, (NH 4) 2 S, NaS в различных условиях.

Более широко применяемым, доступным и безопасным является кислотно-основный метод, при котором катионы разделяют на 6 групп (табл. 1.3.1.). Номер группы указывает на последовательность воздействия реактивом.


Таблица 1.3.1

Классификация катионов по кислотно-основному способу

Номер группы Катионы Групповой реактив Растворимость соединений
I Ag + , Pb 2+ , Hg 2 2+ 2MHCl Хлориды нерастворимы в воде
II Ca 2+ , Sr 2+ , Ba 2+ 1MH 2 SO 4 Сульфаты нерастворимы в воде
III Zn 2+ , Al 3+ , Cr 3+ , Sn 2+ , Si 4+ , As 4MNaOH Гидроксиды амфотерны, растворимы в избытке щелочи
IV Mg 2+ , Mn 2+ , Fe 2+ , Fe 3+ , Bi 3+ , Sb 3+ , Sb 5+ 25 %-й NH 3 Гидроксиды нерастворимы в избытке NaOH или NH 3
Номер группы Катионы Групповой реактив Растворимость соединений
V Co 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Hg 2+ 25 %-й NH 3 Гидроксиды растворяются в избытке NH 3 с образованием комплексных соединений
VI Na + , K + , NH 4 + Нет Хлориды, сульфаты, гидроксиды растворимы в воде

Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.

Наиболее простым образом их можно разделить на две группы по отношению к иону Ba 2+ :

а) дающие хорошо растворимые соединения в воде: Cl - , Br - , I - , CN - , SCN - , S 2- , NO 2 2- , NO 3 3- , MnO 4- , CH 3 COO - , ClO 4 - , ClO 3 - , ClO - ;

б) дающие плохорастворимые соединения в воде: F - , CO 3 2- , CsO 4 2- , SO 3 2- , S 2 O 3 2- , SO 4 2- , S 2 O 8 2- , SiO 3 2- , CrO 4 2- , PO 4 3- , AsO 4 3- , AsO 3 3- .

Качественный химический анализ органических веществ подразделяют на элементный , функциональный , структурный и молекулярный .

Анализ начинают с предварительных испытаний органического вещества. Для твердых измеряют t плав. , для жидких - t кип или , показатель преломления. Молярную массу определяют по понижению t замерз или повышению t кип, то есть криоскопическим или эбулиоскопическим методами. Важной характеристикой является растворимость, на основе которой существуют классификационные схемы органических веществ. Например, если вещество не растворяется в Н 2 О, но растворяется в 5%-ном растворе NaOH или NaHCO 3 , то оно относится к группе веществ, в которую входят сильные органические кислоты, карбоновые кислоты с более чем шестью атомами углерода, фенолы с заместителями в орто- и параположениях, -дикетоны.

Таблица 1.3.2

Реакции для идентификации органических соединений

Тип соединения Функциональная груп-па, участвующая в реакции Реагент
Альдегид С = О а) 2,4 - динитрофенилгидрозид б) гидрохлорид гидроксиламина в) гидросульфат натрия
Амин - NH 2 а) азотистая кислота б) бензолесульфохлорид
Ароматический углеводород Азоксибензол и хлорид алюминия
Кетон С = О См. альдегид
Ненасыщенный углеводород - С = С - - С ≡ С - а) раствор KMnO 4 б) раствор Вr 2 в СCL 4
Нитросоединение - NO 2 а) Fe(OH) 2 (соль Мора + КОН) б) цинковая пыль + NH 4 Clв) 20% раствор NaOH
Спирт (R) - OH а) (NH 4) 2 б) раствор ZnCl 2 в HCl в) йодная кислота
Фенол (Ar) - OH a) FeCl 3 в пиридине б) бромная вода
Эфир простой (R΄)- OR а) йодоводородная кислота б) бромная вода
Эфир сложный (R΄) - COOR а) раствор NaOH (или КОН) б) гдрохлорид гидроксиламина

Элементным анализом обнаруживают элементы, входящие в молекулы органических веществ (C, H, O, N, S, P, Cl, и др.). В большинстве случаев органическое вещество разлагают, продукты разложения растворяют и в полученном растворе определяют элементы как в неорганических веществах. Например, при обнаружении азота пробу сплавляют с металлическим калием, получая KCN, который обрабатывают FeSO 4 , переводят в K 4 . Добавляя к последнему раствор ионов Fe 3+ , получают берлинскую лазурь Fe 4 3 - (AC на присутствие N).

Анализ вещества может проводиться с целью установления качественного или количественного его состава. В соответствии с этим различают качественный и количественный анализ.

Качественный анализ позволяет установить, из каких химических элементов состоит анализируемое вещество и какие ионы, группы атомов или молекулы входят в его состав. При исследовании состава неизвестного вещества качественный анализ всегда предшествует количественному, так как выбор метода количественного определения составных частей анализируемого вещества зависит от данных, полученных при его качественном анализе.

Качественный химический анализ большей частью основывается на превращении анализируемого вещества в какое-нибудь новое соединение» обладающее характерными свойствами: цветом, определенным физическим состоянием, кристаллической или аморфной структурой, специфическим запахом и т. п. Химическое превращение, происходящее при этом, называют качественной аналитической реакцией, а вещества, вызывающие это превращение, называют реактивами (реагентами).

Например, для открытия в растворе -ионов анализируемый раствор сначала подкисляют хлористоводородной кислотой, а затем прибавляют раствор гексацианоферрата (II) калия . В присутствии выпадает синий осадок гексацианоферрата (II) железа (берлинская лазурь):

Другим примером качественного химического анализа может служить обнаружение солей аммония путем нагревания анализируемого вещества с водным раствором едкого натра. Ионы аммония в присутствии -ионов образуют аммиак, который узнают по запаху или по посинению влажной красной лакмусовой бумаги:

В приведенных примерах растворы гексацианоферрата (II) калия и едкого натра являются соответственно реактивами на и -ионы.

При анализе смеси нескольких веществ, близких по химическим свойствам, их предварительно разделяют и только затем проводят характерные реакции на отдельные вещества (или ионы), поэтому качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения.

Количественный анализ позволяет установить количественные соотношения составных частей данного соединения или смеси веществ. В отличие от качественного анализа количественный анализ дает возможность определить содержание отдельных компонентов анализируемого вещества или общее содержание определяемого вещества в исследуемом продукте.

Методы качественного и количественного анализа, позволяющие определять в анализируемом веществе содержание отдельных элементов, называют элементным анализом; функциональных групп - функциональным анализом; индивидуальных химических соединений, характеризующихся определенным молекулярным весом, - молекулярным анализом.

Совокупность разнообразных химических, физических и физикохимических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных! систем, различающихся по свойствам и физическому строению и ограниченных друг от друга поверхностями раздела, называют фазовым анализом.

КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ, получение информации о качественном составе вещества, о природе его компонентов; один из основных видов химического анализа. Цели качественного химического анализа - обнаружение и идентификация компонентов аналитической пробы и/или опознание её как целостного объекта. Исходя из природы компонентов, различают изотопный, элементный, молекулярный, фазовый, структурно-групповой (функциональный) и другие виды качественного химического анализа. Обычно качественный химический анализ предшествует количественному химическому анализу.

Качественный химический анализ выполняют химическими методами анализа, физическими методами анализа, физико-химическими методами анализа и биохимическими методами анализа; используют также биологический метод анализа. Свойства пробы сравнивают со свойствами эталона, состав которого известен. Обычно эталон - предполагаемый компонент в чистом виде или его раствор. Свойства эталона могут быть изучены заранее и представлены в таблицах, справочниках и других базах данных. Совпадение какого-либо свойства пробы и эталона - единичный признак присутствия компонента; при этом компонент считают идентифицированным, если при испытании пробы выявлен ряд его независимых характеристик. Чем этих характеристик больше и чем они более специфичны именно для данного компонента, тем выше достоверность идентификации. Неспецифичность характеристик может приводить к ложной идентификации. Вывод «компонент отсутствует» также может быть ошибочным, если в пробе есть вещества, маскирующие опознаваемый компонент (например, переводящие его в другую форму), либо концентрация компонента в пробе ниже некоторого значения (предела обнаружения), зависящего от природы данного компонента и методики качественного химического анализа. Предел обнаружения (C min) - минимальное содержание компонента, необходимое для его обнаружения по данной методике с заданной надёжностью. Отрицательный результат обычно означает, что содержание компонента в пробе ниже C min .

До середины 17 века качественный химический анализ сводился к распознаванию чистых веществ по их цвету, запаху, вкусу, плотности и т.п.; учитывалось также изменение свойств пробы при прокаливании, окрашивание пламени при внесении в него вещества и др. Начиная с работ Р. Бойля, получил распространение элементный качественный химический анализ. Основным методом анализа стало проведение качественных химических реакций: к раствору пробы добавляют химический реагент, взаимодействующий с искомым компонентом, и о наличии в пробе этого компонента судят по образованию или исчезновению осадка, изменению цвета раствора, выделению газа и др. При образовании кристаллического осадка о его составе судят в основном по цвету, растворимости и форме кристаллов (на исследовании кристаллических осадков основана микрокристаллоскопия). Специфические качественные реакции позволяют обнаружить компонент без его выделения из пробы - так называемый дробный анализ (например, при взаимодействии иода с крахмалом синее окрашивание раствора однозначно указывает на присутствие иода). Неспецифичность многих качественных реакций потребовала разработки сложных схем систематического качественного химического анализа, включающих последовательное выделение из пробы групп ионов с подобными свойствами с помощью различных осадителей - групповых реагентов. В 18 веке шведским химиком Т. Бергманом предложена и в 19 веке немецкими химиками Г. Розе и К. Фрезениусом усовершенствована сероводородная схема систематического разделения и обнаружения химических элементов, основанная на использовании в качестве группового реагента Н 2 S. В анализе минералов и сплавов эту схему успешно использовали до 1970-х годов.

В конце 19 века В. Оствальд предложил рассматривать реакции разделения и обнаружения элементов в растворах как ионные реакции. Были предложены селективные и высокочувствительные реагенты органические на различные катионы и анионы, например, диметилглиоксим - реактив Чугаева (Л. А. Чугаев, 1905) для специфического обнаружения ионов Ni 2+ . Использование органических реагентов и маскирующих веществ при проведении качественного химического анализа способствовало созданию надёжных методик капельного анализа неорганических веществ (российский химик Н. А. Тананаев, австрийский химик Ф. Файгль). Успешно развивался качественный химический анализ органических веществ. Элементы, входящие в их состав (С, Н, N, О, S, Р, галогены), распознавали с помощью качественных реакций после термического разложения пробы и превращения элементов в реакционноспособные формы. Для установления состава и структуры органических соединений использовали химические методы функционального анализа.

Во 2-й половине 20 века чаще стали использоваться физические и физико-химические методы качественного химического анализа, имеющие ряд преимуществ перед химическими. Как правило, физические методы отличаются большей селективностью, экспрессностью, легче автоматизируются и дают более надёжные результаты. Если для химических методов C min порядка 10ˉ 4 ―10ˉ 6 моль/дм 3 , то некоторые физические методы позволяют обнаруживать примеси на уровне 10ˉ 8 ―10ˉ 12 моль/дм 3 . Физические методы основаны на измерении тех свойств пробы и эталона, которые зависят от природы, но не от содержания компонента. Так, при проведении атомно-эмиссионного спектрального анализа регистрируют спектр пробы, измеряют длины волн спектральных линий и проверяют наличие линий, характерных для искомого элемента и не зависящих от присутствия других элементов. Совпадение множества линий с точностью до погрешности измерения длины волны надёжно доказывает присутствие искомого элемента в пробе. Другие важные физические методы качественного химического анализа - рентгеновский спектральный анализ, ИК-спектроскопия, масс-спектрометрия, хромато-масс-спектрометрия. Реже используют кинетические и электрохимические методы анализа (например, полярографию), люминесцентный анализ. Резонансные методы (ЯМР- и ЭПР-спектрометрия) применяют для идентификации и установления структуры чистых веществ, а также для анализа смесей. Качественный химический анализ смесей органических веществ (нефтепродукты, лекарственные препараты, белки и др.) обычно включает фракционирование или полное разделение пробы методами хроматографии, экстракции, электрофореза и др. Характеристики удерживания компонентов в хроматографической колонке используются и для их идентификации. Современные направление в развитии качественного химического анализа - создание систем компьютерной идентификации, использующих базы данных или алгоритмы распознавания образов.

Литературу смотри при статьях Аналитическая химия, Химический анализ.

Методы качественного анализа делятся на физические, физико-химические и химические.

Физические и физико-химические методы анализа основаны на измерении какого-либо параметра системы, который является функ­цией состава. Например, в спектральном анализе исследуют спектры излучения, возникающие при внесении вещества в пламя горелки или электрической дуги. По наличию в спектре линий, характер­ных для данных элементов, узнают об элементарном составе веще­ства.

В физико-химических методах анализа об элементарном составе веществ судят по тем или иным характерным свойствам атомов или ионов, используемых в данном методе. Например, в хроматографии состав вещества определяют по характерной окраске ионов, адсорбирующихся в определенном порядке, или же по окраске соединений, образующихся при проявлении хроматограммы.

Между физическими и физико-химическими методами не всегда можно установить строгую границу. Поэтому их часто объединяют под общим названием «инструментальные» методы.

Химические методы основаны на превращении анализируемого вещества в новые соединения, обладающие определенными свой­ствами. По образованию характерных соединений элементов и уста­навливают элементарный состав веществ. Например, ионы Сu 2+ можно обнаружить по образованию комплексного иона [Сu (NH 3) 4 ] 2+ лазурно-синего цвета.

Качественные аналитические реакции по способу их выполнения делятся на реакции «мокрым» и «сухим» путем. Наибольшее зна­чение имеют реакции «мокрым» путем. Для проведения их иссле­дуемое вещество должно быть предварительно растворено. В ка­чественном анализе находят применение только те реакции, которые сопровождаются ка­кими-либо хорошо заметными для наблюда­теля внешними эффектами: изменением окраски раствора; выпаде­нием или растворением осадка; выделением газов, обладающих характерным запахом или цветом, и т. п.

Особенно часто применяются реакции, сопровождающиеся образованием осадков и изменением окраски раствора. Такие реакции называются реакциями «открытия», так как с их помощью обнаруживаются присутствующие в растворе ионы. Широко используются также реакции идентификации, с помощью которых проверяется правильность «открытия» того или иного иона. Наконец, применяют­ся реакции осаждения, с помощью которых обычно отделяется одна группа ионов от другой или один ион от других ионов.

В зависимости от количества анализируемого вещества, объема раствора и техники выполнения отдельных операций химические методы качественного анализа делятся на макро-, микро-, полумикро- и ультрамикроанализ и др.

В 1955 г. секция аналитической химии Международного объединения по чистой и прикладной химии приняла «Классификацию методов анализа» и предложила их новые наименования (табл. 1.1).



Классический макрохимический анализ требует для проведения анализа от 1 до 10 г вещества или от 10 до 100 мл исследуемого раствора. Он проводится в обычных пробирках на 10-15 мл, при этом пользуются также химическими стаканами и колбами на 150-200 мл, воронками для фильтрования и другим оборудованием. Микрохимический анализ позволяет анализировать от 0,001 до 10 -6 г вещества или от 0,1 до 10 -4 мл исследуемого раствора. По тех­нике выполнения микрохимический анализ делится на микрокристаллоскопический и капельный методы анализа.

Микрокристаллоскопический метод анализа проводится с помощью микроскопа. На предметном стекле микроскопа капля исследуемого раствора приводится во взаимодействие с каплей реагента. Образующееся химическое соединение определяется по форме кристал­лов, а иногда по окраске или оптическим свойствам его.

Капельный метод анализа введен в аналитическую практику Н. А. Тананаевым с 1920 г. Этим методом реакции выполняются с каплями растворов и реагентов, обладающих высокой чувствительностью. Применение их, поэтому дает возможность обнаруживать весьма малые количества катионов. Данный вид анализа можно проводить на фарфоровой плас­тинке, предметном и часовом стеклах и на фильтровальной бумаге.

В полумикроанализе химик работает с пробами исследуемого вещества массой от 0,05 до 0,5 г и оперирует с объемами растворов от 1 до 10 мл. При этом виде анализа частично используется техника макроанализа и микроанализа. Посуда и оборудование те же, что и в макроанализе, но уменьшенного типа.

Методы микро- и полумикрохимического анализа имеют целый ряд преимуществ перед методами макрохимического анализа; они позволяют с меньшей затратой времени и реактивов производить капельный анализ.

Анализ «сухим» путем проводится с твердыми веществами. Он делится на пирохимический анализ и анализ методом растирания.

Пирохимический анализ - нагревание исследуемого вещества в пламени газовой горелки. Рассмотрим два приема анализа: полу­чение окрашенных перлов; реакции окрашивания пламени.

Получение окрашенных перлов. Ряд солей и оксидов металлов при растворении в расплавленном фосфате натрия-аммония NaNH 4 HPО 4 · 4Н 2 О или тетраборате натрия Na 2 B 4 О 7 · l0H 2 O об­разуют стекла (перлы). Наблюдая их окраску, можно установить, какие элементы имеются в исследуемом веществе. Так, например, соединения хрома дают изумрудно-зеленые перлы; соединения ко­бальта - интенсивно синие перлы; соединения марганца - фиоле­тово-аметистовые перлы; соединения железа - желто-бурые пер­лы; соединение никеля - красно-бурые перлы и т. д. Методика получения перлов довольно проста. Платиновую про­волочку, один конец которой согнут в ушко, а второй впаян в стек­лянную трубку, накаливают в пламени газовой горелки и погружа­ют в соль, например тетраборат натрия. Часть соли расплавляется около горячей проволоки и пристает к ней. Проволоку с кристалли­ками сначала держат над пламенем горелки, а затем помещают в бесцветную часть пламени и получают бесцветный перл. Горячим перлом прикасаются к исследуемому веществу, затем его накали­вают в окислительном пламени горелки до полного растворения взятого вещества и отмечают цвет перла в горячем и холодном состоянии.

Реакции окрашивания пламени. Летучие соли многих металлов при внесении их в несветящуюся часть пламени газовой горелки окрашивают пламя в различные цвета, характерные для этих ме­таллов (табл. 1.2). Окраска зависит от раскаленных паров свободных металлов, получающихся в результате термического разложения солей при внесении их в пламя горелки.

Реакции окрашивания пламени удаются хорошо только с лету­чими солями (хлоридами, карбонатами и нитратами). Нелетучие соли (бораты, силикаты, фосфаты) смачивают перед внесением их в пламя концентрированной соляной кислотой для перевода их в летучие хлориды.

Приемы пирохимического анализа используются в качественном анализе как предварительное испытание при анализе смеси сухих веществ или как проверочные реакции.

Анализ методом растирания предложен в 1898 г. Ф. М. Флавицким. В методе растирания исследуемое твердое вещество помещают в фарфоровую ступку и растирают с примерно равным количеством твердого реагента. В результате реакции обычно образуется окра­шенное вещество, по окраске которого и судят о наличии определя­емого иона. Например, для открытия иона кобальта несколько кри­сталликов хлорида кобальта CoCl 2 растирают с кристаллами роданида аммония NH 4 SCN. При этом смесь синеет вследствие обра­зования комплексной соли тетрародано (II) кобальтата аммония (NH 4) 2 :

CoCI 2 + 4NH 4 SCN = (NH 2) 2 + 2NH 4 C1

Для открытия ацетат-аниона СН 3 СОО - кристалл соли расти­рают с небольшим количеством твердого гидросульфата натрия или гидросульфата калия. Выделяющаяся при этом свободная уксусная кислота узнается по запаху:

CH 3 COONa + NaHSO 4 = Na 2 SO + СН 3 СООН

Метод Ф. М. Флавицкого почти не применялся на практике и и только в 50-х годах П. М. Исаков значительно расширил и углу­бил метод растирания и показал целесообразность его применения при анализе руд и минералов в полевых условиях.

В качественном анализе реакции «сухим» путем играют вспомогательную роль; ими пользуются обычно в качестве предварительных испытаний и проведения проверочных реакций.

Качественный анализ может использоваться для идентификации в исследуемом объекте атомов (элементный анализ), молекул (молекулярный анализ), простых или сложных веществ (вещественный анализ), фаз гетерогенной системы (фазовый анализ). Задача качественного неорганического анализа обычно сводится к обнаружению катионов или анионов, присутствующих в анализируемой пробе. Качественный анализ необходим для обоснования выбора метода количественного анализа того или иного материала или способа разделения смеси веществ. Качественный химический анализ используют в сельском хозяйстве и при решении проблем защиты окружающей среды. В агрохимической службе он необходим для распознавания минеральных удобрений, а в контроле загрязненности среды - для обнаружения пестицидных остатков и др.

Типы химических реакций.

Пирохимические реакции. Ряд методов качественного анализа основан на проведении химических реакций, проводимых сплавлением, нагреванием на древесном угле, в пламени газовой горелки или паяльной лампы. При этом вещества окисляются кислородом воздуха, восстанавливаются оксидом углерода, атомарным углеродом пламени или древесного угля. Окисление или восстановление может привести к образованию окрашенных продуктов. Одной из наиболее употребительных пирохимических реакций является проба окрашивания пламени. Пламя окрашивается в характерный для катиона цвет. Окрашивание пламени соединениями некоторых элементов представлено в таблице.

Цвет пламени

Цвет пламени

Карминово-красный

Сине-фиолетовый

Изумрудно-зеленый

Фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Розово-фиолетовый

Бледно-синий

Кирпично-красный

Бледно-синий

Стронций

Карминово-красный

Изумрудно-зеленый

Желто-зеленый

Зеленый, голубой

Молибден

Желто-зеленый

Микрокристаллоскопические реакции - это реакции при проведении которых образуются осадки, состоящие из кристаллов характерной формы и цвета. Определяют внешнюю форму кристаллов, которые обладают определенной симметрией. Газовыделительные реакции - реакции в которых выделяются газообразные соединения. Для обнаружения отдельных газов применяют специфичные реактивы (сероводород обнаруживают ацетатом свинца – почернение, аммиак–фенолфталеином - покраснение в щелочной среде). Цветные реакции - основной тип реакций обнаружения веществ. Цвет сохраняется у всех соединений цветных катионов и анионов (манганаты, хроматы, дихроматы). Цвет может появиться и измениться в зависимости от условий под действием иона противоположного знака– например б/ц ионы йода и серебра образуют иодид серебра желто–коричневого цвета.

Открытие ионов, специфическим реакциями в отдельной пробе всего исследуемого раствора в любой последовательности называется дробным анализом . Систематический ход анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной реакцией. Реактивы, позволяющие в определенной последовательности разделять ионы на аналитические группы, называются групповыми .

2024 english-speak.ru. Изучение английского языка.