Что такое рациональные числа кратко. Определение рациональных чисел

Множество рациональных чисел

Множество рациональных чисел обозначается и может быть записано таком в виде:

При этом оказывается, что разные записи могут представлять одну и ту же дробь, например, и , (все дроби, которые можно получить друг из друга умножением или делением на одно и то же натуральное число, представляют одно и то же рациональное число). Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей со взаимно простыми целым числителем и натуральным знаменателем:

Здесь - наибольший общий делитель чисел и .

Множество рациональных чисел является естественным обобщением множества целых чисел . Легко видеть, что если у рационального числа знаменатель , то является целым числом. Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел имеет счётную мощность (то есть все его элементы можно перенумеровать). Заметим, кстати, что ещё древние греки убедились в существовании чисел, не представимых в виде дроби (например, они доказали, что не существует рационального числа, квадрат которого равен 2).

Терминология

Формальное определение

Формально рациональные числа определяются как множество классов эквивалентности пар по отношению эквивалентности , если . При этом операции сложения и умножения определяются следующим образом:

Связанные определения

Правильные, неправильные и смешанные дроби

Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Правильные дроби представляют рациональные числа, по модулю меньшие единицы . Дробь, не являющаяся правильной, называется неправильной и представляет рациональное число, большее или равное единице по модулю.

Неправильную дробь можно представить в виде суммы целого числа и правильной дроби, называемой смешанной дробью . Например, . Подобная запись (с пропущенным знаком сложения), хотя и употребляется в элементарной арифметике , избегается в строгой математической литературе из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь.

Высота дроби

Высота обыкновенной дроби - это сумма модуля числителя и знаменателя этой дроби. Высота рационального числа - это сумма модуля числителя и знаменателя несократимой обыкновенной дроби, соответствующей этому числу.

Например, высота дроби равна . Высота же соответствующего рационального числа равна , так как дробь сокращается на .

Комментарий

Термин дробное число (дробь) иногда [уточнить ] используется как синоним к термину рациональное число , а иногда синоним любого нецелого числа. В последнем случае, дробные и рациональные числа являются разными вещами, так как тогда нецелые рациональные числа - всего лишь частный случай дробных.

Свойства

Основные свойства

Множество рациональных чисел удовлетворяют шестнадцати основным свойствам , которые легко могут быть получены из свойств целых чисел .

  1. Упорядоченность . Для любых рациональных чисел и существует правило, позволяющее однозначно идентифицировать между ними одно и только одно из трёх отношений : «», «» или «». Это правило называется правилом упорядочения и формулируется следующим образом: два положительных числа и связаны тем же отношением, что и два целых числа и ; два неположительных числа и связаны тем же отношением, что и два неотрицательных числа и ; если же вдруг неотрицательно, а - отрицательно, то .

    Суммирование дробей

  2. Операция сложения . правило суммирования суммой чисел и и обозначается , а процесс отыскания такого числа называется суммированием . Правило суммирования имеет следующий вид: .
  3. Операция умножения . Для любых рациональных чисел и существует так называемое правило умножения , которое ставит им в соответствие некоторое рациональное число . При этом само число называется произведением чисел и и обозначается , а процесс отыскания такого числа также называется умножением . Правило умножения имеет следующий вид: .
  4. Транзитивность отношения порядка. Для любой тройки рациональных чисел , и если меньше и меньше , то меньше , а если равно и равно , то равно .
  5. Коммутативность сложения. От перемены мест рациональных слагаемых сумма не меняется.
  6. Ассоциативность сложения. Порядок сложения трёх рациональных чисел не влияет на результат.
  7. Наличие нуля . Существует рациональное число 0, которое сохраняет любое другое рациональное число при суммировании.
  8. Наличие противоположных чисел. Любое рациональное число имеет противоположное рациональное число, при суммировании с которым даёт 0.
  9. Коммутативность умножения. От перемены мест рациональных множителей произведение не меняется.
  10. Ассоциативность умножения. Порядок перемножения трёх рациональных чисел не влияет на результат.
  11. Наличие единицы . Существует рациональное число 1, которое сохраняет любое другое рациональное число при умножении.
  12. Наличие обратных чисел . Любое ненулевое рациональное число имеет обратное рациональное число, умножение на которое даёт 1.
  13. Дистрибутивность умножения относительно сложения. Операция умножения согласована с операцией сложения посредством распределительного закона:
  14. Связь отношения порядка с операцией сложения. К левой и правой частям рационального неравенства можно прибавлять одно и то же рациональное число.
  15. Связь отношения порядка с операцией умножения. Левую и правую части рационального неравенства можно умножать на одно и то же положительное рациональное число.
  16. Аксиома Архимеда . Каково бы ни было рациональное число , можно взять столько единиц, что их сумма превзойдёт .

Дополнительные свойства

Все остальные свойства, присущие рациональным числам, не выделяют в основные, потому что они, вообще говоря, уже не опираются непосредственно на свойства целых чисел, а могут быть доказаны исходя из приведённых основных свойств или непосредственно по определению некоторого математического объекта. Таких дополнительных свойств очень много. Здесь имеет смысл привести лишь некоторые из них.

Счётность множества

Чтобы оценить количество рациональных чисел, нужно найти мощность их множества. Легко доказать, что множество рациональных чисел счётно . Для этого достаточно привести алгоритм, который нумерует рациональные числа, т. е. устанавливает биекцию между множествами рациональных и натуральных чисел. Примером такого построения может служить следующий простой алгоритм. Составляется бесконечная таблица обыкновенных дробей, на каждой -ой строке в каждом -ом столбце которой располагается дробь . Для определённости считается, что строки и столбцы этой таблицы нумеруются с единицы. Ячейки таблицы обозначаются , где - номер строки таблицы, в которой располагается ячейка, а - номер столбца.

Полученная таблица обходится «змейкой» по следующему формальному алгоритму.

Эти правила просматриваются сверху вниз и следующее положение выбирается по первому совпадению.

В процессе такого обхода каждому новому рациональному числу ставится в соответствие очередное натуральное число. Т. е. дроби ставится в соответствие число 1, дроби - число 2, и т. д. Нужно отметить, что нумеруются только несократимые дроби. Формальным признаком несократимости является равенство единице наибольшего общего делителя числителя и знаменателя дроби.

Следуя этому алгоритму, можно занумеровать все положительные рациональные числа. Это значит, что множество положительных рациональных чисел счётно. Легко установить биекцию между множествами положительных и отрицательных рациональных чисел, просто поставив в соответствие каждому рациональному числу противоположное ему. Т. о. множество отрицательных рациональных чисел тоже счётно. Их объединение также счётно по свойству счётных множеств. Множество же рациональных чисел тоже счётно как объединение счётного множества с конечным.

Разумеется, существуют и другие способы занумеровать рациональные числа. Например, для этого можно воспользоваться такими структурами как дерево Калкина - Уилфа, дерево Штерна - Броко или ряд Фарея .

Утверждение о счётности множества рациональных чисел может вызывать некоторое недоумение, т. к. на первый взгляд складывается впечатление, что оно гораздо обширнее множества натуральных чисел. На самом деле это не так и натуральных чисел хватает, чтобы занумеровать все рациональные.

Недостаточность рациональных чисел

См. также

Целые числа
Рациональные числа
Вещественные числа Комплексные числа Кватернионы

Примечания

Литература

  • И.Кушнир. Справочник по математике для школьников. - Киев: АСТАРТА, 1998. - 520 с.
  • П. С. Александров. Введение в теорию множеств и общую топологию. - М.: глав. ред. физ.-мат. лит. изд. «Наука», 1977
  • И. Л. Хмельницкий. Введение в теорию алгебраических систем

Определение рациональных чисел:

Рациональным числом называют число, которое может быть представлено в виде дроби. Числитель такой дроби принадлежит множеству целых чисел, а знаменатель принадлежит множеству натуральных чисел.

Почему числа называют рациональными?

По латински "рацио" (ratio) означает отношение. Рациональные числа могут быть представлены в виде отношения, т.е. другими словами в виде дроби.

Пример рационального числа

Число 2/3 есть рациональное число. Почему? Это число представлено в виде дроби, числитель которой принадлежит множеству целых чисел, а знаменатель - множеству натуральных чисел.

Больше примеров рациональных чисел см. в статье .

Равные рациональные числа

Разные дроби могут представлять одно рациональное число.

Рассмотрим рациональное число 3/5. Этому рациональному числу равны

Сократим числитель и знаменатель на общий множитель 2:

6 = 2 * 3 = 3
10 2 * 5 5

Мы получили дробь 3/5, а это значит, что

Определение рациональных чисел

К рациональным числам относятся:

  • Натуральные числа, которые можно представить как обыкновенную дробь. Например, $7=\frac{7}{1}$.
  • Целые числа, включая число нуль, которые можно представить как положительную или отрицательную обыкновенную дробь, или как нуль. Например, $19=\frac{19}{1}$, $-23=-\frac{23}{1}$.
  • Обыкновенные дроби (положительные или отрицательные).
  • Смешанные числа, которые можно представить как неправильную обыкновенную дробь. Например, $3 \frac{11}{13}=\frac{33}{13}$ и $-2 \frac{4}{5}=-\frac{14}{5}$.
  • Конечная десятичная дробь и бесконечная периодическая дробь, которую можно представить как обыкновенную дробь. Например, $-7,73=-\frac{773}{100}$, $7,(3)=-7 \frac{1}{3}=-\frac{22}{3}$.

Замечание 1

Заметим, что бесконечная непериодическая десятичная дробь не относится к рациональным числам, т.к. ее нельзя представить как обыкновенную дробь.

Пример 1

Натуральные числа $7, 670, 21 \ 456$ являются рациональными.

Целые числа $76, –76, 0, –555 \ 666$ – рациональные.

Обыкновенные дроби $\frac{7}{11}$, $\frac{555}{4}$, $-\frac{7}{11}$, $-\frac{100}{234}$ – рациональные числа.

Таким образом, рациональные числа делятся на положительные и отрицательные. Число нуль является рациональным, но не относится ни к положительным, ни к отрицательным рациональным числам.

Сформулируем более краткое определение рациональных чисел.

Определение 3

Рациональными называют числа, которые могут быть представлены в виде конечной или бесконечной периодической десятичной дроби.

Можно сделать следующие выводы:

  • положительные и отрицательные целые и дробные числа относятся к множеству рациональных чисел;
  • рациональные числа могут быть представлены в виде дроби, у которой целый числитель и натуральный знаменатель и которая является рациональным числом;
  • рациональные числа могут быть представлены в виде любой периодической десятичной дроби, которая является рациональным числом.

Как определить, является ли число рациональным

  1. Число задано в виде числового выражения, которое состоит только из рациональных чисел и знаков арифметических операций. В таком случае значением выражения будет рациональное число.
  2. Квадратный корень из натурального числа – рациональное число только в том случае, когда под корнем стоит число, которое является полным квадратом некоторого натурального числа. Например, $\sqrt{9}$ и $\sqrt{121}$ – рациональные числа, так как $9=3^2$ и $121=11^2$.
  3. Корень $n$-ой степени из целого числа – рациональное число только в том случае, когда число под знаком корня является $n$-ой степенью какого-либо целого числа. Например, $\sqrt{8}$ – рациональное число, т.к. $8=2^3$.

На числовой оси рациональные числа располагаются повсюду плотно: между каждыми двумя рациональными числами, которые не равны друг другу, можно расположить хотя бы одно рациональное число (следовательно, и бесконечное множество рациональных чисел). В то же время, множество рациональных чисел характеризуется счетной мощностью (т. е. все элементы множества можно пронумеровать). Древние греки доказали, что существуют числа, которые невозможно записать как дробь. Они показали, что не существует такое рациональное число, квадрат которого равен $2$. Тогда рациональных чисел оказалось недостаточно для выражения всех величин, что и привело в дальнейшем к появлению вещественных чисел. Множество рациональных чисел, в отличие от вещественных чисел, является нульмерным.

Как мы уже видели, множество натуральных чисел

замкнуто относительно сложения и умножения, а множество целых чисел

замкнуто относительно сложения, умножения и вычитания. Однако ни одно из этих множеств не замкнуто относительно деления, поскольку деление целых чисел может привести к дробям, как, например, в случаях 4/3, 7/6, -2/5 и т.д. Совокупность всех таких дробей образует множество рациональных чисел. Таким образом, рациональное число (рациональная дробь) есть такое число, которое можно представить в виде , где а и d - целые числа, причем d не равно нулю. Сделаем по поводу этого определения несколько замечаний.

1) Мы потребовали, чтобы d было отлично от нуля. Это требование (математически записываемое неравенством ) необходимо, поскольку здесь d является делителем. Рассмотрим следующие примеры:

Случай 1. .

Случай 2. .

В случае 1 d является делителем в смысле предыдущей главы, т. е. 7 есть точный делитель 21, В случае 2 d по-прежнему является делителем, но уже в другом смысле, поскольку 7 не есть точный делитель 25.

Если 25 назвать делимым, а 7 - делителем, то мы получим частное 3 и остаток 4. Итак, слово делитель используется здесь в более общем смысле и применимо к большему числу случаев, чем в гл. I. Однако в случаях, подобных случаю 1, должно оставаться применимым понятие делителя, введенное в гл. I; поэтому необходимо, как и в гл. I, исключить возможность d = 0.

2) Отметим, что, в то время как выражения рациональное число и рациональная дробь являются синонимами, само по себе слово дробь используется для обозначения любого алгебраического выражения, состоящего из числителя и знаменателя, как, например,

3) В определение рационального числа входит выражение «число, которое можно представить в виде , где а и d - целые числа и . Почему его нельзя заменить выражением «число вида , где а и d - целые числа и Причиной этому является то обстоятельство, что существует бесконечно много способов выражения одной и той же дроби (например, 2/3 можно также записать, как 4/6, 6/9, или или 213/33, или и т. п.), и нам желательно, чтобы наше определение рационального числа не зависело от частного способа его выражения.

Дробь определяется таким образом, что ее значение не меняется при умножении числителя и знаменателя на одно и то же число. Однако не всегда можно сказать, просто посмотрев на данную дробь, является она рациональной или нет. Рассмотрим, например, числа

Ни одно из них в выбранной нами записи не имеет вида , где а и d - целые числа.

Мы можем, однако, произвести над первой дробью ряд арифметических преобразований и получить

Таким образом, мы приходим к дроби, равной исходу ной дроби, для которой . Число следовательно, рационально, но оно не было бы рациональным, если бы определение рационального числа требовало бы, чтобы число имело вид а/b, где а и b - целые числа. В случае дроби преобразования

приводят к числу . В последующих главах мы узнаем, что число не может быть представлено как отношение двух целых чисел и, следовательно, оно не рационально или, как говорят, иррационально.

4) Отметим, что всякое целое число рационально. Как мы только что видели, это верно в случае числа 2. В общем случае произвольных целых чисел можно, аналогично, приписать каждому из них знаменатель, равный 1, и получить их представление в виде рациональных дробей.

В этом пункте мы дадим несколько определений рациональных чисел. Несмотря на различия в формулировках, все эти определения имеют единый смысл: рациональные числа объединяют целые числа и дробные числа, подобно тому, как целые числа объединяют натуральные числа, противоположные им числа и число нуль. Иными словами, рациональные числа обобщают целые и дробные числа.

Начнем с определения рациональных чисел , которое воспринимается наиболее естественно.

Определение.

Рациональные числа – это числа, которые можно записать в виде положительной обыкновенной дроби, отрицательной обыкновенной дроби или числа нуль.

Из озвученного определения следует, что рациональным числом является:

· Любое натуральное число n . Действительно, можно представить любоенатуральное число в виде обыкновенной дроби, например, 3=3/1 .

· Любое целое число, в частности, число нуль. В самом деле, любое целое число можно записать в виде либо положительной обыкновенной дроби, либо в виде отрицательной обыкновенной дроби, либо как нуль. Например, 26=26/1 , .

· Любая обыкновенная дробь (положительная или отрицательная). Это напрямую утверждается приведенным определением рациональных чисел.

· Любое смешанное число. Действительно, всегда можно представить смешанное число в виде неправильной обыкновенной дроби. Например, и.

· Любая конечная десятичная дробь или бесконечная периодическая дробь. Это так в силу того, что указанные десятичные дроби переводятся в обыкновенные дроби. К примеру, а 0,(3)=1/3 .

Также понятно, что любая бесконечная непериодическая десятичная дробь НЕ является рациональным числом, так как она не может быть представлена в виде обыкновенной дроби.

Теперь мы можем с легкостью привести примеры рациональных чисел . Числа 4 ,903 , 100 321 – это рациональные числа, так как они натуральные. Целые числа 58 ,−72 , 0 , −833 333 333 тоже являются примерами рациональных чисел. Обыкновенные дроби 4/9 , 99/3 , - это тоже примеры рациональных чисел. Рациональными числами являются и числа.

Из приведенных примеров видно, что существуют и положительные и отрицательные рациональные числа, а рациональное число нуль не является ни положительным, ни отрицательным.

Озвученное выше определение рациональных чисел можно сформулировать более краткой форме.

Определение.

Рациональными числами называют числа, которые можно записать в виде дроби z/n , где z – целое число, а n – натуральное число.

Докажем, что данное определение рациональных чисел равносильно предыдущему определению. Мы знаем, что можно рассматривать черту дроби как знак деления, тогда из свойств деления целых чисел и правил деления целых чисел следует справедливость следующих равенств и. Таким образом, что и является доказательством.

Приведем примеры рациональных чисел, основываясь на данном определении. Числа−5 , 0 , 3 , и являются рациональными числами, так как они могут быть записаны в виде дробей с целым числителем и натуральным знаменателем вида и соответственно.

Определение рациональных чисел можно дать и в следующей формулировке.

Определение.

Рациональные числа – это числа, которые могут быть записаны в виде конечной или бесконечной периодической десятичной дроби.

Это определение также равносильно первому определению, так как всякой обыкновенной дроби соответствует конечная или периодическая десятичная дробь и обратно, а любому целому числу можно сопоставить десятичную дробь с нулями после запятой.

Например, числа 5 , 0 , −13 , представляют собой примеры рациональных чисел, так как их можно записать в виде следующих десятичных дробей 5,0 , 0,0 ,−13,0 , 0,8 и −7,(18) .

Закончим теорию этого пункта следующими утверждениями:

· целые и дробные числа (положительные и отрицательные) составляют множество рациональных чисел;

· каждое рациональное число может быть представлено в виде дроби с целым числителем и натуральным знаменателем, а каждая такая дробь представляет собой некоторое рациональное число;

· каждое рациональное число может быть представлено в виде конечной или бесконечной периодической десятичной дроби, а каждая такая дробь представляет собой некоторое рациональное число.

К началу страницы

Сложение положительных рациональных чисел коммутативно и ассоциативно,

("а, b Î Q +) а + b= b + а;

("а, b, с Î Q +) (а + b)+ с = а + (b+ с)

Прежде чем сформулировать определение умножения положительных рациональных чисел, рассмотрим следующую задачу: известно, что длина отрезка Х выражается дробьюпри единице длины Е, а длина единичного отрезка измерена при помощи единицы Е 1 и выражается дробью. Как найти число, которым будет представлена длина отрезка X, если измерить ее при помощи единицы длины Е 1 ?

Так как Х=Е, то nХ=mЕ, а из того, что Е =Е 1 следует, что qЕ=рЕ 1 . Умножим первое полученное равенство на q, а второе – на m. Тогда (nq)Х = (mq)Е и (mq)Е= (mр)Е 1 , откуда (nq)X= (mр)Е 1. Это равенство показывает, что длина отрезка х при единице длины выражается дробью , азначит, =, т.е. умножение дробей связано с переходом от одной единицы длины к другой при изме­рении длины одного и того же отрезка.

Определение.Если положительное число а представлено дробью, а положительное рациональное число b дробью, то их произведением называется число а b , которое представляется дробью.

Умножение положительных рациональных чисел коммутативно, ассоциативно и дистрибутивно относительно сложения и вычитания. Доказательство этих свойств основываетсяна определении умножения и сложения положительных рациональных чисел, а также на соответствующих свойствах сложения и умножения натуральных чисел.

46. Как известно вычитание - это действие, противоположное сложению.

Если a и b - положительные числа , то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a
Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.
Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.
Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)
Пример.
6 - 8 = 6 + (- 8) = - 2
Пример.
0 - 2 = 0 + (- 2) = - 2
Стоит запомнить выражения ниже.
0 - a = - a
a - 0 = a
a - a = 0

Правила вычитания отрицательных чисел
Вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.
Разность может быть положительным числом, отрицательным числом или числом ноль.
Примеры вычитания отрицательных и положительных чисел.
- 3 - (+ 4) = - 3 + (- 4) = - 7
- 6 - (- 7) = - 6 + (+ 7) = 1
5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a
+ (- a) = - a
Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a
- (- a) = + a
Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0
Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n
Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.
Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел+ (+) = + + (-) = -
- (-) = + - (+) = -
Или выучить простое правило.
Минус на минус даёт плюс,
Плюс на минус даёт минус.

Правила деления отрицательных чисел.
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

· модуль делимого разделить на модуль делителя;

· перед результатом поставить знак «+».

Примеры деления чисел с разными знаками:

Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении
+ : (+) = + + : (-) = -
- : (-) = + - : (+) = -

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби
Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».
Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:
Частное от деления нуля на число, отличное от нуля, равно нулю.
0: a = 0, a ≠ 0
Делить на ноль НЕЛЬЗЯ!
Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
а: 1 = a
а: (- 1) = - a
а: a = 1 , где а - любое рациональное число.
Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
если a × b = с; a = с: b; b = с: a;
если a: b = с; a = с × b; b = a: c
Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.
Пример нахождения неизвестного.
x × (- 5) = 10
x = 10: (- 5)
x = - 2


Похожая информация.


2024 english-speak.ru. Изучение английского языка.