Получение твердых дисперсных систем. Получение, стабилизация и очистка дисперсных систем. Задача коллоидной химии – изучение гетерогенных систем с сильно развитой поверхностью раздела фаз. Такие системы называют дисперсными

Золь - дисперсная система с твердочастичной дисперсной фазой. Аэрозоль соответствует газообразной дисперсной среде, а лиозоль (гидрозоль) - жидкой дисперсной среде.

Диспергирование жидкостей обычно называют распылением, если оно происходит в газовой фазе, и эмульгированием, когда его проводят в другой жидкости, несмешивающейся с первой.

Дисперги́рование - тонкое измельчение твердых тел или жидкостей, в результате чего получают порошки, суспензии, эмульсии (эмульги́рование , или эмульга́ция ). При диспергировании твердых тел происходит их механическое разрушение.

Методы диспергирования

механическое диспергирование – осуществляется под действием внешней механической работы. Способы: истирание, раздавливание, раскалывание, распыление, барботаж (пропускание струи воздуха через жидкость), встряхивание, взрыв, действие звуковых и ультразвуковых волн. Таким методом получают муку, сахарную пудру, какао порошок, пряности, молотый кофе и другие. Размер частиц, получаемых этим методом, к.п. довольно большой, не менее 100 нм. Оборудование: ступки, мельницы, дробилки различных типов, жернова.

Для повышения эффективности механическое диспергирование проводят в жидкой среде. Жидкости (растворы ПАВ, электролитов), смачивающие твердое тело, адсорбируются на нем и снижаютпрочность при механической обработке. Это называется адсорбционное понижение прочности твердых тел или эффект Ребиндера (обосновано в 1982 г. П.А. Ребиндером).

электрическое диспергирование – основан на образовании вольтовой дуги между электродами из распыляемого металла, помещенными в охлаждаемую ДС. Металлы при температуре вольтовой дуги испаряются, а затем в холоднойДС конденсируются. Таким методом получают в основном гидрозоли металлов (дисперсионной средой является вода), например серебра, золота и платины.

диспергирование ультразвуком – основано на воздействии при помощи ультразвуковых колебаний с частотой выше 20 тыс. в 1 с., не улавливаемых человеческим ухом, эффективно лишь для веществ с небольшой прочностью. К ним относят серу, графит, крахмал, каучук, желатин и др.

К физико-химическому диспергированию относится метод пептизации. Он заключается в переводе свежеприготовленных рыхлых осадков в коллоидный раствор под действием специальных стабилизирующих добавок (пептизаторов – электролиты, растворы ПАВ). Действие пептизатора заключается в том, что частицы осадка отделяются друг от друга и переходят во взвешенное состояние, образуя золь. Таким методом можно получить, например, гидрозоль гидроксида железа (III ). Метод пептизации можно применять только для свежеприготовленных осадков, так как в процессе хранения происходят процессы рекристаллизации и старения, приводящие к сращиванию частиц друг с другом. Размеры частиц получаемых данным методом около 1 нм .

Два метода получения дисперсных систем – диспергирование и конденсация

Диспергирование и конденсация – методы получения свободнодисперсных систем: порошков, суспензий, золей, эмульсий и т. Д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией – образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты.

В мировом производстве различных веществ и материалов процессы диспергирования и конденсации занимают одно из ведущих мест. Миллиарды тонн сырья и продуктов получают в свободнодисперсном состоянии. Это обеспечивает удобство их транспортирования и дозировки, а также дает возможность получать однородные материалы при составлении смесей.

В качестве примеров можно привести дробление и измельчение руд, каменного угля, производство цемента. Диспергирование происходит при сжигании жидкого топлива.

Конденсация происходит при образовании тумана, при кристаллизации.

Необходимо отметить, что при диспергировании и конденсации образование дисперсных систем сопровождается возникновением новой поверхности, т. Е. увеличением удельной площади поверхности веществ и материалов иногда в тысячи и более раз. Поэтому получение дисперсных систем, за некоторым исключением, требует затрат энергии.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что ведет к увеличению расхода энергии на их дальнейшее диспергирование.

Разрушение материалов может быть облегчено при использовании эффекта Ребиндера адсорбционного понижения порочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ, в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких поверхностно-активных веществ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов или типичные ПАВ.

Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. Поверхностно-активные вещества не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, препятствуя слипанию частиц.

Системы с максимальной степенью дисперсности могут быть получены только с помощью конденсационных методов.

Коллоидные растворы можно получать также и методом химической конденсации , основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д.

Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. П.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.

Микрофильтрация . Микрофильтрацией называется отделение с помощью фильтров микрочастиц размером от 0,1 до 10 мкм. Производительность микрофильтрата определяется пористостью и толщиной мембраны. Для оценки пористости, т. Е. отношения площади пор к общей площади фильтра, используют разнообразные методы: продавливание жидкостей и газов, измерение электрической проводимости мембран, продавливание систем, содержащих калиброванные частицы дисперсионной фазы, и пр.

Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимерные мембраны для микрофильтрования чаще всего изготовляют из целлюлозы и ее производных.

Электродиализ. Очистку от электролитов можно ускорить, применяя налагаемую извне разность потенциалов. Такой метод очистки называется электродиализом. Его использование для очистки различных систем с биологическими объектами (растворы белков, сыворотка крови и пр.) началось в результате успешных работ Доре (1910). Устройство простейшего электродиализатора показано на рис. 5(смотри приложение). Очищаемый объект (золь, раствор ВМС) помещают в среднюю камеру 1, а в две боковые камеры наливают среду. В катодную 3 и анодную 5 камеры ионы проходят сквозь поры в мембранах под действием приложенного электрического напряжения.

Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ.

Комбинированные методы очистки. Помимо индивидуальных методов очистки – ультрафильтрации и электродиализа – известна их комбинация: электроультрафильтрация, применяемая для очистки и разделения белков.

Очистить и одновременно повысить концентрацию золя или раствора ВМС можно с помощью метода, называемого электродекантацией. Метод предложен В. Паули. Электродекантация происходит при работе электродиализатора без перемешивания. Частицы золя или макромолекулы обладают собственным зарядом и под действием электрического поля перемещаются в направлении одного из электродов. Так как они не могут пройти через мембрану, то их концентрация у одной из мембран возрастает. Как правило, плотность частиц отличается от плотности среды. Поэтому в месте концентрирования золя плотность системы отличается от среднего значения (обычно с ростом концентрации растет плотность). Концентрированный золь стекает на дно электродиализатора, и в камере возникает циркуляция, продолжающаяся до практически полного удаления частиц.

Коллоидные растворы и, в частности, растворы лиофобных коллоидов, очищенные и стабилизированные могут, несмотря на термодинамическую неустойчивость, существовать неопределенно долгое время. Растворы красного золя золота, приготовленные Фарадеем, до сих пор не подверглись никаким видимым изменениям. Эти данные позволяют считать, что коллоидные системы могут находиться в метастабильном равновесии.

Получение дисперсных систем связано в первую очередь с получением дисперсных частиц. Нужно решить следующие задачи:

  • 1) распределить дисперсные частицы в дисперсионной среде до необходимой концентрации;
  • 2) стабилизировать дисперсную систему, чтобы сохранить ее структуру и свойства в течение достаточно длительного времени;
  • 3) провести очистку дисперсной системы от различных примесей.

Эти задачи решают в зависимости от специфики (типа) той или иной дисперсной системы.

Получение дисперсных систем

Эмульсии. Поскольку эмульсии -- грубодисперсные системы, их обычно получают диспергационным методом. Жидкости, которые должны образовать эмульсию, интенсивно перемешивают или подвергают воздействию механических вибраций или ультразвука. Чтобы получить капли одинакового размера (т.е. монодисперсную систему), проводят гомогенизацию. Этот процесс заключается в продавливании жидкости дисперсной фазы в дисперсионную среду через небольшие отверстия требуемого диаметра под большим давлением. Такой прием используют, например, при обработке молока. В результате гомогенизации средний размер капель жира уменьшается примерно от 1 --3 до 0,1 --0,2 мкм.

Эмульсии получают также конденсационными методами (обычно -- заменой растворителя).

Самостоятельную задачу представляет получение высококонцентрированных эмульсий. К ним относят эмульсии с концентрацией дисперсной фазы более 74 об. %, вплоть до 99 об. %. Капли дисперсной фазы в таких эмульсиях, имеющие форму многогранных призм, разделены тонкими пленками жидкой дисперсионной среды.

Концентрированные эмульсин могут обладать механическими свойствами твердых тел -- прочностью и упругостью.

Специфика приготовления концентрированных эмульсий заключается в том, что дисперсная фаза вводится в дисперсионную жидкую среду небольшими порциями при интенсивном перемешивании.

Пены. Как и эмульсии, пены -- грубодисперсные системы. Поэтому во многих технологических процессах пены получают теми же диспергационными методами, которые применяют для получения газовых пузырьков.

Конденсационные методы получения пен основаны на пересыщении раствора газа в данной жидкости при соответствующем изменении температуры или давления. Используют также химические реакции с выделением газа. В качестве примера приведем реакцию, лежащую в основе приготовления пены в огнетушителях:

NaHCO 3 + HCl > NaCl + H 2 O+ СО 2 ^

Еще один конденсационный метод получения пен основан на использовании микробиологических процессов.

Коллоидные растворы. Получают коллоидные растворы (золи) различными конденсационными методами. Для получения высокодисперсных золей необходимо обеспечить выполнение следующего условия: скорость образования твердых частиц должна во много раз превышать скорость их роста. Чтобы выполнить это условие, при получении дисперсных частиц с помощью химических реакций часто используют такой способ: концентрированный раствор одного компонента вливают в небольшом количестве в сильно разбавленный раствор другого компонента при очень интенсивном перемешивании.

Гели. Приведенные выше системы являются свободнодисперсными. Получение связнодисперсных систем имеет определенную специфику. Рассмотрим в качестве примера получение гелей. Обычно их получают из коллоидных растворов (золей). При определенных условиях дисперсные частицы слипаются друг с другом -- происходит процесс коагуляции.

Если частицы имеют анизодиаметричсскую форму (стержни, эллипсоиды), то они соединяются преимущественно своими концами и образуют пространственную структуру (сетку), в ячейках которой находится жидкая дисперсионная среда. Процесс превращения золей в гели называют золь--гель-переход. Он имеет важное значение в нанотехнологии. Таким образом, гели, как и концентрированные эмульсии, иногда могут быть биконтинуальными дисперсными системами.

Свойства гелей весьма эффективно регулируют, изменяя концентрацию дисперсной фазы и форму дисперсных частиц. Еще один важный фактор -- температура: ее повышение затрудняет образование контактов между дисперсными частицами и поэтому прочность гелей снижается.

Методы получения коллоидных растворов также можно разделить на две группы: методы конденсации и диспергирования (в отдельную группу выделяется метод пептизации , который будет рассмотрен позднее). Еще одним необходимым для получения золей условием, помимо доведения размеров частиц до коллоидных, является наличие в системе стабилизаторов - веществ, препятствующих процессу самопроизвольного укрупнения коллоидных частиц.

Рис. Классификация способов получения дисперсных систем (в скобках указан вид систем)

Дисперсионные методы

Дисперсионные методы основаны на раздроблении твердых тел до частиц коллоидного размера и образовании таким образом коллоидных растворов. Процесс диспергирования осуществляется различными методами: механическим размалыванием вещества в т.н. коллоидных мельницах, электродуговым распылением металлов, дроблением вещества при помощи ультразвука .

Диспергирование может быть самопроизвольное и несамопроизвольное. Самопроизвольное диспергирование характерно для лиофильных систем и связано с ростом беспорядка системы (когда из одного большого куска образуется много мелких частиц). При диспергировании при постоянной температуре рост энтропии должен превышать изменение энтальпии.

ΔН > TΔS; ΔG > 0.

Процесс диспергирования в этом случае является типично несамопроизвольным и осуществляется за счет внешней энергии.

Диспергирование характеризуется степенью диспергирования. Она определяется отношением размеров исходного продукта и частиц дисперсной фазы полученной системы. Степень диспергирования можно выразить следующим образом:


α 1 = d н /d к; α 2 = B н /B к; α 3 = V н /V к,

где d н; d к; B н; B к; V н; V к — соответственно диаметр, площадь пoвepxнocти, объем частиц до и после диспергирования.

Таким образом, степень диспергирования может быть выражена в единицах размера (α 1), площади поверхности (α 2) или объема (α 3) частиц дисперсной фазы, т.е. может быть линейной, поверхностной или объемной.

Работа W, необходимая для диспергирования твердого тела или жидкости, затрачивается на деформирование тела W д и на образование новой поверхности раздела фаз W а, которая измеряется работой адгезии. Деформирование является необходимой предпосылкой разрушения тела. Согласно П.А. Ребиндеру работа диспергирования определяется по формуле

W = W a + W д = σ*ΔB + кV,

где σ* — величина, пропорциональная или равная поверхностному натяжению на границе раздела между дисперсной фазой и дисперсионной средой; ΔB — увеличение поверхности раздела фаз в результате диспергирования; V — объем исходного тела до диспергирования; к — коэффициент, эквивалентный работе деформирования единицы объема тела.

Методы конденсации

К конденсационным методам получения дисперсных систем относятся конденсация, десублимация и кристаллизация . Они основаны на образовании новой фазы в условиях пересыщенного состояния вещества в газовой или жидкой среде. При этом система из гомогенной переходит в гетерогенную. Конденсация и десублимация характерны для газовой, а кристаллизация — для жидкой среды.

Необходимым условием конденсации и кристаллизации является пересыщение и неравномерное распределение вещества в дисперсионной среде (флуктуация концентрации), а также образование центров конденсации или зародышей.

Степень пересыщения β для раствора и пара можно выразить следующим образом:

β ж = с/с s , β П = р/р s ,

где р, с — давление пересыщенного пара и концентрация вещества в пересыщенном растворе; р s — равновесное давление насыщенного пара над плоской поверхностью; с s — равновесная концентрация, соответствующая образованию новой фазы.

Для осуществления кристаллизации охлаждают раствор или газовую смесь.

В основе конденсационных методов получение дисперсных систем лежат процессы кристаллизации, десублимации и конденсации, которые вызваны уменьшением энергии Гиббса (ΔG < 0) и протекают самопроизвольно.

При зарождении и образовании частиц из пересыщенного раствора или газовой среды изменяется химический потенциал µ, возникает поверхность раздела фаз, которая становится носителем избыточной свободной поверхностной энергии.

Работа, затрачиваемая на образование частиц, определяется поверхностным натяжением σ и равна:

W 1 = 4πr 2 σ,

где 4πr 2 — поверхность сферических частиц радиусом r.

Химический потенциал изменяется следующим образом:

Δμ = μ i // - μ i / < 0; μ i // > μ i / ,

где μ i / и μ i // — химические потенциалы гомо и гетерогенных систем (при переходе от мелких капель к крупным).

Изменение химического потенциала характеризует перенос определенного числа молей вещества из одной фазы в другую; это число n молей равно объему частицы 4πr 3 /3, деленному на мольный объем Vм:

Работа образования новой поверхности в процессе конденсации W к равна:

где W 1 и W 2 — соответственно работа, затрачиваемая на образование поверхности частиц, и работа на перенос вещества из гомогенной среды в гетерогенную.

Образование дисперсных систем может происходить в результате физической и химической конденсации, а также при замене растворителя.

Физическая конденсация осуществляется при понижении температуры газовой среды, содержащей пары различных веществ. При выполнении необходимых условий образуются частицы или капли дисперсной фазы. Подобный процесс имеет место не только в объеме газа, но и на охлажденной твердой поверхности, которую помещают в более теплую газовую среду.

Конденсация определяется разностью химических потенциалов (μ i // - μ i /) < 0, которая изменяется в результате замены растворителя. В отличие от обычной физической конденсации при замене растворителя состав и свойства дисперсионной среды не остаются постоянными. Если спиртовые или ацетоновые растворы серы, фосфора, канифоли и некоторых других органических веществ влить в воду, то раствор становится пересыщенным, происходит конденсация и образуются частицы дисперсной фазы. Метод замены растворителя является одним из немногих, при помощи которых можно получить золи.

При химической конденсации происходит образование вещества с одновременным его пересыщением и конденсацией.

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость.

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Метод диспергирования. Заключается в механическом дроблении твердых тел до заданной дисперсности; диспергирование ультразвуковыми колебаниями; электрическое диспергирование под действием переменного и постоянного тока. Для получения дисперсных систем методом диспергирования широко используют механические аппараты: дробилки, мельницы, ступки, вальцы, краскотерки, встряхиватели. Жидкости распыляются и разбрызгиваются с помощью форсунок, волчков, вращающихся дисков, центрифуг. Диспергирование газов осуществляют главным образом с помощью барботирования их через жидкость. В пенополимерах, пенобетоне, пеногипсе газы получают с помощью веществ, выделяющих газ при повышенной температуре или в химических реакциях.

Несмотря на широкое применение диспергационных методов, они не могут быть применимы для получения дисперсных систем с размером частиц -100 нм. Такие системы получают кондесационными методами.

В основе конденсационных методов лежит процесс образования дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Необходимое требование при этом методе – создание пересыщенного раствора, из которого должна быть получена коллоидная система. Этого можно достичь при определенных физических или химических условиях.

Физические методы конденсации:

1) охлаждение паров жидкостей или твердых тел при адиабатическом расширении или смешивании их с большим объемом воздуха;

2) постепенное удаление (выпаривание) из раствора растворителя или замена его другим растворителем, в котором диспергируемое вещество хуже растворяется.

Так, к физической конденсации относится конденсация водяного пара на поверхности находящихся в воздухе твердых или жидких частиц, ионов или заряженных молекул (туман, смог).

Замена растворителя приводит к образованию золя в тех случаях, когда к исходному раствору добавляют другую жидкость, которая хорошо смешивается с исходным растворителем, но является плохим растворителем для растворенного вещества.

Химические методы конденсации основаны на выполнении различных реакций, в результате которых из пересыщенного раствора осаждается нерастворенное вещество.

В основе химической конденсации могут лежать не только обменные, но и окислительно-восстановительные реакции, гидролиза и т.п.

Дисперсные системы можно также получить методом пептизации, который заключается в переводе в коллоидный «раствор» осадков, частицы которых уже имеют коллоидные размеры. Различают следующие виды пептизации: пептизацию промыванием осадка; пептизацию поверхностно – активными веществами; химическую пептизацию.

С точки зрения термодинамики, наиболее выгодным является метод диспергирования.

Методы очистки:

1. Диализ – очистка золей от примесей с помощью полупроницаемых мембран, омываемых чистым растворителем.

2. Электродиализ – диализ, ускоренный за счет электрического поля.

3. Ультрафильтрация – очистка путем продавливания дисперсионной среды вместе с низкомалекулярными примесями через полупроницаемую мембрану(ультрафильтр).

Малекулярно-кинетические и оптические свойства дисперсных систем: броуновское движение, осмотическое давление, диффузия, седиментационное равновесие, седиментационный анализ, оптические свойства дисперсных систем.

Все молеклярно-кинетические свойства обусловлены самопроизвольны движением молекул и проявляются в броуновском движении, диффузии, осмосе, седиментауионном равновесии.

Броуновским называют непрерывное, хоатичное, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкости или газах, за счет воздействия молекул дисперсионной среды. Теория броуновского движения исходит из представления о взаимодействии случайной силы, которая характеризует удары молекул, силы, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде с определенной скоростью.

Кроме поступательного движения возможно и вращательное, характерно для двухмерных частиц неправильной формы (нитей, волокон, хлопьев). Броуновское движение наиболее ярко выражено у высокодисперсных систем, а его интенсивность зависит от дисперсности.

Диффузия – самопроизвольное распространение вещества из области с большей концентрацией в область меньшей концентрацией. Различают следующие виды:

1.)молекулярную

3)коллоидные частицы.

Скорость диффузии в газах наибольшая, а в твердых телах – наименьшая.

Осмотическое давление – это такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. ОД возникает при движении чистогорастворителя в сторону раствора или от более разбавленного раствора в сторону более концентрированного, а следовательно связано с раностью концентрацией растворенного вещества и растворителя. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы оно в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор).

Седиментация – это расслоение дисперсных систем под действием силы тяжести с отделением дисперсной фазы в виде осадка. Способность дисперсных систем к седиментации является показателем их седиментационной устойчивости. Процессы расслоения применяют тогда, когда требуется выделить тот или иной компонент из какого-то компонента из какого-то природного или искусственно приготовленного продукта, представляющего собой гетерогенную жидкостную систему. В одних случаях из системы извлекают ценный компонент, в других удаляют нежелательные примеси. В общественном питании процессы расслоения дисперсных систем необходимы, когда требуется получить прозрачные напитки, осветилить бульон, освободить его от частиц мяса.

Поведение луча света, встречающего на пути частицы дисперсной фазы, зависит о соотношения длины волны света и размеров частиц. Если размеры частиц больше длины световой волны, то свет отражается от поверхности частиц под определенным углом. Это явление наблюдается в суспензиях. Если размеры частиц меньше длины световой волны, то свет рассеивается.

2024 english-speak.ru. Изучение английского языка.