Что такое белки, какой у них состав, зачем они нужны? Курсовая работа: Изучение элементов химического состава пищевых продуктов на примере белков Основные химические элементы входящие в состав белков

Известно, что в основе живой материи лежат органические вещества – белки, жиры, углеводы и нуклеиновые кислоты. Но самое важное место среди этих веществ занимает белок.

Большинство известных науке веществ при нагревании переходят из твердого вещества в жидкое. Но есть вещества, которые, наоборот, при нагревании переходят в твердое состояние. Эти вещества объединил в отдельный класс французский химик Пьер Джозеф Маке в 1777 г. По аналогии с яичным белком, который сворачивается при нагревании, эти вещества были названы белками. Белки иначе называются протеинами. По-гречески протеин (протейос) означает «занимающий первое место». Это название белок получил в 1838 г., когда голландский биохимик Жерар Мюльдер написал, что жизнь на планете была бы невозможна без некоего вещества, которое является наиболее важным из всех известных науке веществ и которое обязательно присутствует абсолютно во всех растениях и животных. Это вещество Мюльдер назвал протеин.

Белок – это самое сложное вещество среди всех питательных веществ. В каждой клетке человеческого организма происходят химические реакции, в которых очень важную роль играет белок.

Из чего состоит белок

В состав белков входят: азот, кислород, водород, углерод. А вот другие питательные вещества азот не содержат.

Белок – это природный полимер. А полимеры – это вещества, молекулы которых содержат очень большое количество атомов. Ещё в XIX векерусский химик Александр Михайлович Бутлеров доказал, что если изменяется строение молекулы, то изменяются и свойства вещества. Основным строительным материалом белков являются аминокислоты. А в белках встречаются различные сочетания аминокислот. Следовательно, в природе существует большое разнообразие белков с различными свойствами. С помощью исследований обнаружили примерно 20 аминокислот, которые участвуют в создании белков.

Как происходит процесс образования молекулы белка

Аминокислоты присоединяются друг к другу последовательно. В результате этого процесса образуется цепочка, которая называется полипептид. Впоследствии полипептиды могут сворачиваться в спирали или принимать другую форму. Свойства белка зависят от состава аминокислот, от того, какое количество аминокислот участвует в синтезе, и в каком порядке эти аминокислоты присоединяются друг к другу. Например, в синтезе двух белков участвует одинаковое количество аминокислот, имеющих к тому же одинаковый состав. Но если эти аминокислоты будут располагаться в разной последовательности, то мы получим два абсолютно разных белка.

Если пептиды содержат не более 15 аминокислотных остатков, то они называются олигопептиды. А пептиды, содержащие до нескольких десятков тысяч или даже сотен тысяч аминокислотных остатков, называются белками. Молекула белка имеет компактную пространственную структуру. Эта структура может быть в виде волокон. Такие белки называются фибриллярными. Они являются строительными белками. Если молекула белка имеет структуру в виде шара, то белки называются глобулярными. К таким белкам относятся ферменты, антитела, некоторые гормоны.

В зависимости от того, какие аминокислоты входят в состав белков, белки бывают полноценные и неполноценные. В состав полноценных белков входит полный набор аминокислот. В неполноценных белках некоторые аминокислоты отсутствуют.

Белки также подразделяются на простые и сложные. Простые белки содержат только аминокислоты. В состав сложных белков кроме аминокислот входят ещё и металлы, углеводы, липиды, нуклеиновые кислоты.

Роль белков в организме человека

В организме человека белки выполняют различные функции.

1. Структурная . Белки входят в состав клеток всех тканей и органов.

2. Защитная . Белок интерферон синтезируется в организме для защиты от вирусов.

3. Двигательна я. Белок миозин участвует в процессе сокращения мышц.

4. Транспортная. Гемоглобин, являющийся белком, в составе эритроцитов участвует в переносе кислорода и углекислого газа.

5. Энергетическа я. В результате окисления молекул белков освобождается энергия, необходимая для жизнедеятельности организма.

6. Каталитическа я. Белки ферменты выступают в роли биологических катализаторов, увеличивающих скорость химических реакций в клетках.

7. Регуляторна я. Гормоны регулируют различные функции организма. Например, инсулин регулирует уровень сахара в крови.

В природе существует огромное количество белков, способных выполнять самые разнообразные функции. Но самая главная функция белков – поддержание жизни на Земле совместно с другими биомолекулами.

Вот и дошла очередь до одного из самых важных вопросов в среде бодибилдинга - белков. Фундаментальной тема является потому, что белки являются главным строительным материалом для мышц, именно за счет него (белка) и видны (или, как вариант, не видны) результаты постоянных занятий. Тема не очень легкая, но если разобраться в ней основательно, то лишить себя рельефных мышц просто не получится.

Далеко не все те, кто относит себя к числу бодибилдеров или просто ходит в тренажерный зал, хорошо разбираются в теме белков. Обычно знания заканчиваются где-то на грани «белки - это хорошо, и их нужно есть». Нам же сегодня предстоит разбираться глубоко и основательно в таких вопросах, как:

Строение и функции белков;

Механизмы синтеза белков;

Каким образом белки выстраивают мышцы и прочее.

В целом, рассмотрим каждую мелочь в питании бодибилдеров, и уделим им пристальное внимание.

Белки: начинаем с теории

Как уже неоднократно упоминалось в прошлых материалах, пища попадает в организм человека в виде нутриентов: белков, жиров, углеводов , витаминов , минералов. Но еще ни разу не упоминалась информация о том, а в каком количестве нужно потреблять те или иные вещества, чтобы добиться определенных целей. Сегодня речь пойдет и об этом.

Если говорить об определении белка, то самым простым и понятным будет высказывание Энгельса относительно того, что существование белковых тел и есть жизнь. Тут сразу становится понятно, нет белка - нет жизни. Если же рассматривать это определение в плоскости бодибилдинга, то без белка не будет и рельефных мышц. А теперь самое время немного погрузиться в науку.

Белок (протеин) представляет собой высокомолекуляные органические вещества, которые состоят из альфа-кислот. Эти мельчайшие частицы соединяются в единую цепочку пептидными связями. В состав белка входит 20 видов аминокислот (9 из них незаменимые, то есть они не синтезируются в организме, а остальные 11 - заменимые).

К незаменимым относятся:

  • Лейцин;
  • Валин;
  • Изолейцин;
  • Лицин;
  • Триптофан;
  • Гистидин;
  • Треонин;
  • Метионин;
  • Фенилаланин.

В число заменимых входят:

  • Аланин;
  • Серин;
  • Цистин;
  • Аргенин;
  • Тирозин;
  • Пролин;
  • Глицин;
  • Аспарагин;
  • Глутамин;
  • Аспарагиновая и глутаминовая кислоты.

Кроме этих входящих в состав аминокислот существуют еще и другие, не входящие в состав, но играющие важную роль. Например, гамма-аминомасляная кислота участвует в процессе передачи нервных импульсов нервной системы. такой же функцией обладает и диоксифенилаланин. Без этих веществ, тренировка превратилась бы в непонятно что, а движения были бы похожи на беспорядочные рывки амебы.

Наиболее важные для организма (если рассматривать в плоскости метаболизма) аминокислоты:

Изолейцин;

Также эти аминокислоты известны как BCAA .

Каждая из трех аминокислот играет важную роль в процессах, связанных с энергетическими составляющими в работе мышц. А чтобы эти процессы проходили максимально правильно и эффективно, каждая из них (аминокислот) должна быть частью ежедневного рациона (вместе с натуральной пищей или в качестве добавок). Дабы ознакомиться с конкретными данными относительно того, в каком количестве нужно потреблять важные аминокислоты, изучите таблицу:

В составе всех белковых веществ находятся такие элементы, как:

  • Углерод;
  • Водород;
  • Сера;
  • Кислород;
  • Азот;
  • Фосфор.

Ввиду этого, очень важно не забывать о таком понятии, как азотистый баланс. Человеческий организм можно назвать своеобразной станцией по переработке азота. А все потому, что азот не только поступает внутрь тела вместе с продуктами питания, но также и выделяется из него (в процессе распада белков).

Разница между количеством потребляемого и выделяемого азота и составляет азотистый баланс. Он может быть, как положительным (когда потребляется большее количество, чем выделяется), так и отрицательном (наоборот). И если хочется набрать мышечную массу и нарастить красивые рельефные мышцы, возможным это будет только в условиях положительного азотистого баланса.

Важно :

В зависимости от того, насколько натренирован атлет, может понадобиться разное количество азота для поддержания необходимого уровня азотистого баланса (на 1 кг массы тела). Усредненные цифры такие:

  • Атлет с имеющимся стажем (порядка 2-3 лет) - 2г на 1кг массы тела;
  • Начинающий атлет (до 1 года) - 2 или 3г на 1кг массы тела.

Но белок является не только структурным элементом. Он также способен выполнять ряд других важных функций, о которых подробнее речь пойдет далее.

О функциях белков

Белки способны выполнять не только функцию роста (которая так интересует бодибилдеров), но также и множество других, не менее важных:

Человеческий организм - умная система, которая сама знает, как и что должно функционировать. Так, к примеру, тело знает, что белок может выступать в качестве источника энергии для работы (резервные силы), но расходовать эти запасы будет нецелесообразно, поэтому лучше расщеплять углеводы. Однако, когда в теле содержится малое количество углеводов, организму больше ничего не остается кроме как расщеплять белок. Так что очень важно не забывать о содержании достаточного количества углеводов в своем рационе.

Каждый отдельно взятый вид белка оказывает разное действие на организм и по-разному способствует росту мышечной массы. Обусловлено это разным химическим составом и особенностями структуры молекул. Это приводит лишь к тому, что атлету нужно помнить об источниках высококачественных белков, что и будут выступать в роли строительного материала для мышц. Здесь самая важная роль отведена такому значению, как биологическая ценность белков (то количество, которое откладывается в организме после употребления 100 граммов белков). Еще один важный нюанс - если биологическая ценность равна единице, то в состав этого белка входит весь необходимый набор незаменимых аминокислот.

Важно : рассмотрим важность биологической ценности на примере: в курином или перепелином яйце коэффициент равен 1, а в пшенице - ровно половина (0.54). Вот и получается, что даже если в продуктах будет содержаться одинаковое количество необходимых белков на 100г продукта, то из яиц их усвоится больше, чем из пшеницы.

Как только человек потребляет белки внутрь (вместе с пищей или в качестве пищевых добавок), то они начинают расщепляться в желудочно-кишечном тракте (благодаря ферментам) до более простых продуктов (аминокислот), а далее на:

  • Воду;
  • Углекислый газ;
  • Аммиак.

После этого вещества всасываются в кровь через стенки кишечника, чтобы потом транспортироваться ко всем органам и тканям.

Такие разные белки

Лучшей белковой пищей считается та, что имеет животное происхождение, так как в ней содержится больше питательных элементов и аминокислот, но не нужно пренебрегать и растительными белками. В идеале соотношение должно выглядеть так:

  • 70-80% пищи - животное происхождение;
  • 20-30% пищи - растительное происхождение.

Если рассматривать белки по степени усвояемости, то их можно разделить на две большие категории:

Быстрые. Молекулы расщепляются до своих простейших компонентов очень быстро:

  • Рыба;
  • Куриная грудка;
  • Яйца;
  • Морепродукты.

Медленные. Молекула расщепляются до своих простейших компонентов очень медленно:

  • Творог.

Если рассматривать белок через призму бодибилдинга, то здесь подразумевается высококонцентрированный белок (протеин). Самыми распространенными протеинами считаются такие (в зависимости от того, как их получают из продуктов):

  • Из сыворотки - быстрее всех усваивается, добывается из сыворотки и отличается самым высоким показателем биологической ценности;
  • Из яиц - всасывается в течении 4-6 часов и характеризуется высоким значением биологической ценности;
  • Из сои - высокий уровень биологической ценности и быстрое усвоение;
  • Казеиновый - усваивается дольше остальных.

Атлетам вегетарианцам нужно запомнить одну вещь: растительный белок (из сои и грибов) является неполноценным (в частности по составу аминокислот).

Поэтому не забывайте учитывать всю эту важную информацию в процессе формирования своего рациона. Особенно важно учитывать незаменимые аминокислоты и соблюдать их баланс при употреблении. Далее поговорим о строении белков

Немного информации о строении белков

Как вам уже известно, белки представляют собой сложные высокомолекулярные органические вещества, у которых 4-х уровневая структурная организация:

  • Первичная;
  • Вторичная;
  • Третичная;
  • Четвертичная.

Атлету совсем не обязательно вникать в подробности того, как устроены элементы и связи в белковых структурах, а вот с практической частью этого вопроса нам сейчас и предстоит разобраться.

Одни белки усваиваются в течение короткого отрезка времени, другим - требуется намного больше. И зависит это, в первую очередь, от строения белков. К примеру, белки в яйцах и молоке усваиваются очень быстро за счет того, что находятся в виде отдельных молекул, которые свернуты в клубки. В процессе поедания, часть из этих связей теряется, а организму становится намного проще усвоить измененную (упрощенную) структуру белка.

Конечно, в результате тепловой обработки пищевая ценность продуктов несколько уменьшается, но это еще не повод для того, чтобы есть продукты сырыми (не варить яйца и не кипятить молоко).

Важно : если вы хотите есть сырые яйца, то вместо куриных можно есть перепелиные (перепелки не подвержены сальмонеллезу, так как температура их тела составляет более 42 градусов).

Если говорить о мясе, то их волокна не предназначены изначально для того, чтобы их ели. Их главная задача - выработка силы. Именно из-за этого волокна мяса жесткие, пронизаны поперечными связями и их сложно переваривать. Варка мяса слегка упрощает этот процесс и помогает желудочно-кишечному тракту разрушать поперечные связи в волокнах. Но даже при таких условиях для усвоения мяса потребуется от 3 до 6 часов. В качестве бонуса за такие «мучения» выступает креатин, который является природным источником повышения работоспособности и силы.

Большинство же растительных белков содержатся в бобовых и различных семенах. Белковые связи в них «запрятаны» достаточно сильно, поэтому для того, чтобы достать их для работы организма, нужно много времени и сил. Таким же сложным для переваривания является и грибной белок. Золотой серединой в мире растительных белков является соя, которая легко усваивается и обладает достаточной биологической ценностью. Но это не значит, что одной сои будет достаточно, белок у нее неполноценный, поэтому его обязательно нужно комбинировать с белками животного происхождения.

А сейчас самое время внимательно присмотреться к продуктам, у которых самое большое содержание белка, ведь именно они помогут нарастить рельефные мышцы:

Внимательно изучив таблицу, можно сразу же составить свой идеальный рацион на весь день. Здесь главное не забывать об основных принципах рационального питания, а также о необходимом количестве белка, которое потребляется в течение суток. Чтобы закрепить материал, приведем пример:

Очень важно не забывать о том, что потреблять белковую пищу нужно разнообразную. Не нужно мучить себя и всю неделю кряду есть одну куриную грудку или творог. Намного эффективней чередовать продукты и тогда рельефные мышцы не за горами.

И еще один вопрос, с которым нужно разобраться, на очереди.

Как оценивать качество белков: критерии

В материале уже упоминался термин «биологическая ценность». Если рассматривать его значения с химической точки зрения, то это будет то количество азота, которое задерживается в организме (от общего поступившего количества). Измерения эти основаны на том, что чем выше содержание необходимых незаменимых аминокислот, то тем выше показатели задержки азота.

Но это не единственный показатель. Кроме него существуют и другие:

Аминокислотный профиль (полный). Все белки в организме должны быть сбалансированы по своему составу, то есть белки в пище с незаменимыми аминокислотами должны полностью соответствовать тем белкам, что находятся в организме человека. Только в таких условиях синтез собственных белковых соединений не будет нарушен и перенаправлен не в сторону роста, а в сторону распада.

Доступность в белках аминокислот. Продукты, в которых содержится большое количество красителей и консервантов, имеют меньше доступных аминокислот. Такой же эффект вызывает и сильная тепловая обработка.

Способность усваиваться. Этот показатель отражает то, как много времени необходимо для расщепления белков на простейшие составляющие с их последующим всасыванием в кровь.

Утилизация белков (чистая). Этот показатель дает информацию, как о том насколько задерживается азот, а также общее количество перевариваемого белка.

Эффективность белков. Особый показатель, который демонстрирует эффективность воздействия того или иного белка на прирост мышечной массы.

Уровень усвоения белков по составу аминокислот. Здесь важно учитывать, как химическую важность и ценность, так и биологическую. Когда коэффициент равен единице, это значит, что продукт оптимально сбалансирован и является отличным источником протеина. А теперь самое время более конкретно посмотреть на цифры относительно каждого продукта из рациона атлета (см. рисунок):

А теперь самое время подвести итоги.

Самое важное, что нужно запомнить

Было бы неправильно не подвести итог всего вышесказанного и не выделить самое важное, что нужно запомнить тем, кто стремится научиться ориентироваться в непростом вопросе создания оптимального рациона для роста рельефных мышц. Так что если вы хотите правильно включать белок в свое питание, то не забывайте о таких особенностях и нюансах, как:

  • Важно, чтобы в рационе преобладали белки животного, а не растительного происхождения (в соотношении 80% к 20%);
  • Лучше всего сочетать белки животного и растительного происхождения в своем рационе;
  • Всегда помните о необходимой норме белков в соответствии с массой тела (2-3г на 1кг массы тела);
  • Не забывайте о качестве протеина, который потребляете (то есть следите за тем, откуда вы его получаете);
  • Не исключайте из виду аминокислоты, которые организм не может сам продуцировать;
  • Старайтесь не обеднять свой рацион и избегайте перекосов в сторону тех или иных нутриентов;
  • Для того, чтобы белки лучше всего усваивались, принимайте витамины и целые комплексы.

Понравилось? - Расскажи друзьям!


Минеральные вещества

К группе макроэлементов относятся такие, содержание которых в сухой субстанции варьирует от nּ10 -2 до nּ10 %. Это С, О, Н, N, S и Р, входящие в молекулярный состав основных веществ и Ca, Na, Cl, К, Mg, входящие в состав опорных тканей, крови, лимфы и др. тканей.

К группе ультрамикроэлементов относятся элементы, содержание которых ниже nּ10 -5 % (Sb, Нg, Вi, Рb и др.).

Установлено, что большинство элементов являются биогенными, имеющими огромное значение для обеспечения нормального развития биохимических жизненных процессов, причем наиболее важные биогенные элементы входят в IV (С); V (W, P) и VI (O, S) группы таблицы Менделеева. Элементы VII (Сl, J, Мn) и VIII (Fe, Со) группы участвуют в образовании веществ с высокой биологической ценностью.

Микроэлементный состав сырья зависит от среды обитания или произрастания. В зависимости от концентрации отдельных элементов в окружающей среде и в пище, доступности их, а также от избирательной способности отдельных видов организмов изменяется и степень использования отдельных элементов при процессах ассимиляции.

Белки

Из органических веществ, входящих в состав живых организмов, наиболее важным в биологическом отношении и наиболее сложными по структуре являются белки. Почти все проявления жизни (пищеварение, раздражительность, сократимость, рост и размножение, движение, обмен веществ и др.) связаны с белковыми веществами. Белки играют важную роль как в построении живой материи, так и в осуществлении процессов ее жизнедеятельности.

Специфические катализаторы белковой природы - ферменты - ускоряют химические реакции, протекающие в организме. Различные соединения белковой природы осуществляют транспортную функцию, снабжая организм кислородом и питательными веществами. Распад 1 г белка до конечных продуктов обеспечивает организм энергией 4,27 ккал.

Выделенные из органов и тканей белки при нагревании дают осадок белого цвета и обладают теми же физическими свойствами, как белок куриного яйца. Поэтому их стали называть белками. Синонимом слова "белок" является слово «протеин» (от греческого "протеус" - первый, главный).

Белки - это высокомолекулярные полимеры различных аминокислот. На рис. 1 представлены формулы различных аминокислот.

Рис.1. Формулы некоторых аминокислот.

Аминокислоты подразделяются на 2 большие группы: заменимые и незаменимые. Большинство аминокислот образуется в организме животных и человека в результате гидролиза белков пищи и биосинтеза. Но как минимум, восемь аминокислот не синтезируются в организме. Это валин, лейцин, изолейцин, треонин, лизин, фенилаланин, триптофан и метионин, называемые незаменимыми. Белки, в которых отсутствует одна или несколько этих аминокислот, называют биологически неполноценными. Животные белки, в том числе белки гидробионтов, содержат все незаменимые аминокислоты.

Аминокислоты, входящие в состав белка, соединяются между собой пептидными связями, образующимися между аминной группой одной аминокислоты и карбоксильной группой другой. Механизм этого процесса показан на рис. 2.

Рис. 2. Образование первичной структуры белка.

Образующиеся полипептиды являются основой всех белков, а заложенная в них определенная последовательность аминокислот характеризует первичную структуру белка.

Таким образом, поскольку макромолекулы белка построены из многих сотен аминокислот, в природе существует безграничное количество их изомеров, и каждый вид живых существ может иметь свой только ему присущий белок.

Полипептидные цепи в свою очередь могут соединяться, образуя вторичные структуры белка, главным образом за счет связей, возникающих между различными группами полипептидов. Это схематично показано на рис. 3.

а) образование водородных связей

б) образование a-спирали из полипептидной цепочки

Рис. 3. Схема образования вторичной структуры белка.

Пространственное расположение полипептидных цепей молекулы белка определяет третичную структуру белковой молекулы.

Собственно белки - высокомолекулярные соединения сложной структуры, различаются как по физиологическим функциям, так и по химическим свойствам. Белки пищевого сырья находятся преимущественно в коллоидном состоянии – в виде гелей и золей, что предопределяет неустойчивость и изменчивость свойств (денатурацию) белковых веществ при изменении условий среды.

При подкислении белковых растворов до рН 4,5-5,0 (например, при мариновании) белки утрачивают растворимость и осаждаются (коагулируют). Многие белки утрачивают растворимость при насыщении растворов хлористым натрием (при посоле). В частности, основные мышечные белки, хорошо растворимые в растворах хлористого натрия концентрацией 7,5-10 %, при повышении его концентрации до 15 % осаждаются (высаливаются). При нагревании (во время варки, обжаривания, пропекания) белки свертываются (коагулируют). Термическая денатурация белков начинается с 28-35 о С. Денатурация белков имеет место и при обезвоживании (дегидратации) их систем (при сушке и замораживании).

При осаждении (высаливании, коагуляции) белков нарушается их связь с водой.

В результате пространственного трехмерного строения "на поверхности" белковой молекулы оказываются химически активные группы – NН 2 ; -COOH; - ОН. В водном растворе эти группы находятся в ионизированном состоянии с зарядами различного знака. Белковая молекула приобретает соответствующий знак и величину заряда в зависимости от соотношения положительно и отрицательно заряженных групп. Заряд белковой молекулы зависит от ее состояния. Всякое изменение структуры белковой молекулы приводит к изменению ее заряда, в частности, потеря заряда приводит к денатурации белка. Наличием этих зарядов обуславливаются также гидратные свойства белков. Например, к положительно заряженной белковой молекуле присоединяются молекулы воды своими отрицательно заряженными концами, и образуется структура, центром которой является белковая молекула, а вокруг нее находится мономолекулярная оболочка воды. Так как все отрицательно заряженные концы молекул воды обращены к белковой молекуле, то на поверхности структуры белок - вода сохраняется тот же заряд. К этой поверхности в свою очередь присоединяются новые группы молекул воды и т.д. При этом вокруг каждой молекулы белка образуется электростатически связанный гидратный слой. Сила связи с белком уменьшается пропорционально квадрату расстояния от центра, т.е. от белковой молекулы, и на достаточно большом в масштабах размеров молекулы расстоянии эта связь настолько мала, что собственное тепловое движение молекул препятствует действию электростатических сил. Это и ограничивает количество воды, удерживаемой поверхностью белка.

По существующим воззрениям белковую ткань можно рассматривать как коллоидное и капиллярно-пористое коллоидное тело очень сложного строения, основу которого составляет структурная сетка из находящихся в набухшем состоянии белков, заключающая вязкие растворы, содержащие растворимые белки и другие азотистые и минеральные вещества, которые обладают гидрофильными свойствами. При этом часть воды, входящей в состав мышечной ткани, прочно удерживается белками структурной сетки, а также молекулами растворенных белков и других гидрофильных веществ.

Наряду с водой, удерживаемой силовым полем на внешней и внутренней поверхности белковых частиц, в мышечной ткани присутствует вода, удерживаемая осмотически и силами механической связи (капиллярноудерживаемая вода). Эта вода находится в жидкостях (растворах), содержащих различные азотистые и органические вещества и минеральные соли, заключенные в замкнутых ячейках (микропорах) внутри белковых структур и пронизывающих последние микро- и макрокапиллярах. По имеющимся в литературе данным, 1 г белка при гидратации связывает в среднем 0,3 г воды.

Все методы обработки, технологические режимы направлены на изменение воды в тканях сырья (насыщение ее солью, превращение в лед, нагрев до температуры, близкой к температуре кипения, испарение). Изменение внутренней энергии воды приводит к нарушению равновесного состояния между белком и водой, образующей гидратную оболочку. Белковая молекула реагирует на это перестройкой собственной структуры и соответственно изменением величины заряда. Когда эти изменения завершаются резким снижением или полным исчезновением заряда наступает денатурация белка.

В зависимости от интенсивности и продолжительности внешнего воздействия денатурация белка может быть или обратимой, иди частично обратимой, или необратимой.

Глубину денатурации можно определить по способности мышечной ткани восстанавливать полностью или частично связь с водой.

Применяемые в настоящее время методы обработки пищевого сырья с высоким содержанием белка приводят в основном к изменениям, которые можно охарактеризовать как частичную денатурацию. Схема денатурации белковой молекулы представлена на рис. 4.

Рис. 4. Схема денатурации белковой молекулы:

А - исходное состояние, Б - начинающееся обратимое развертывание, В - далеко зашедшее необратимое развертывание.

Наиболее характерными изменениями белка при тепловой денатурации (температура 70-100°С) являются потеря им нативных свойств (способности растворяться в воде, растворах солей и спиртов), а также снижение способности к набуханию.

Изменения белка, связанные с тепловой денатурацией, тем значительнее, чем выше температура и продолжительность нагревания, действие давления, причем в водном растворе белок денатурирует быстрее, чем находясь в высушенном состоянии.

Денатурация белков играет важную роль в ряде технологических процессов: при выпечке хлеба, кондитерских изделий, при сушке мяса, рыбы, овощей, молока и яичного порошка, при изготовлении консервов и т.д.

В условиях доведения продукта до полной готовности обычно при продолжительном воздействии температур близких к 100°С, белки подвергаются дальнейшим изменениям, связанным с разрушением их макромолекул, - гидролизу.

В начале процесса от белковых молекул могут отщепляться летучие продукту: углекислый газ, сероводород, аммиак, фосфористый водород и другие вещества, участвующие в образовании вкуса и аромата готовых изделий. При длительном воздействии воды и тепла происходит образование водорастворимых азотистых веществ вследствие деполимеризации белковой молекулы, что имеет место, например, при переходе коллагена в глютин.

Гидролиз белков можно вызвать с помощью протеолитических ферментов, используемых для интенсификации некоторых технологических процессов (размягчение жесткого мяса, приготовление дрожжевого теста и др.).



Белки

Лекция 2

Функции белков

Химический состав белков

Характеристика протеиногенных аминокислот

Структура белков

Классификация белков

Свойства белков и методы исследования

Белки являются структур­ными компонентами органов и тканей, проявляют ферментативную активность (ферменты), участвуют в регуляции метаболизма. Транспортные белки, переносящие протоны и электроны через мембраны обеспечивают биоэнергетику: поглощение света, дыхание, выработку АТФ. Запасные белки (характерны в основном для растений) откладываются в семенах и используются для питания проростков в процессе прорастания. Сжигая АТФ, белки обеспечивают механическую деятельность, участву­ют в движении цитоплазмы и дру­гих клеточных органелл. Важна защитная функция белков: гидролитичес­кие ферменты лизосом и вакуолей расщепляют вредные вещества, попавшие в клетку; гликопротеины участвуют в защите растений от патогенов; белки выполняют криозащитную и антифризную функции. Один белок может вы­полнять две или более функций (неко­торые белки мембран могут выполнять структур­ную и ферментативную функции).

Удивительное разнообразие функций белков и большая распростра­ненность отразились в их названии – протеины (от греческого «рrоtos » - первичный, важнейший ). Как правило, содержание белков в растениях ниже, чем у животных: в вегетативных органах количество белка обычно 5-15% от сухой массы. Так, в листьях тимофеевки содержится 7% белка, а в листьях клевера и вики – 15%. Больше белка в семенах: у злаков в среднем 10-20%, у бобовых и масличных – 25-35%. Наиболее богаты белком семена сои – до 40%, а иногда и выше.

В растительных клетках белки обычно связаны с углеводами, липидами и другими соединениями, а также с мембранами, поэтому их трудно извлекать и получать чистые препараты, особенно из вегетативных органов. В связи с этим в растениях лучше изучены белки семян, где их больше и откуда они легче извлекаются.

Белки – органические соединения, имеющие следующий эле­ментарный состав: углерод 51-55 %; кислород 21-23 %; водород 6,6-7,3 %; азот 15-18 %; сера 0,3-2,4 %. В состав некоторых белков входит также фосфор (0,2-2 %), железо и другие элементы. Характерным показателем элементарного состава белков у всех орга­низмов является наличие азота , в среднем его принимают равным 16 % . Относительное постоянство этого показателя дает возможность использовать его для количественного определения белка: относитель­ное значение содержания белкового азота, в процентах, умножают на фактор пересчета – 6,25 (100: 16 = 6,25). По химической природе белки – гетерополимеры , постро­енные из остатков аминокислот . Аминокислотами (АК) называются органические соединения, в молекулах которых один или несколько атомов водорода замещены аминогруппами ( - NН 2 ).

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты . Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми . Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными . Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат : 1) карбоксильную группу (-СООН), 2) аминогруппу (-NH 2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты , имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты , имеющие более одной аминогруппы; кислые аминокислоты , имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями , так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной . В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов . На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков .

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин . Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Аминокислотный состав, структура белковой молекулы определяют его свойства . Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков ; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией . Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой , в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией . Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой .

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО 2 при фотосинтезе.

Ферменты

Ферменты , или энзимы , — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом .

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор . У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты ).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия .

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами , если тормозят — ингибиторами .

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С-С, С-N, С-О, С-S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С-С, С-N, С-О, С-S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

    Перейти к лекции №2 «Строение и функции углеводов и липидов»

    Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

2024 english-speak.ru. Изучение английского языка.