Какой процесс происходит при переходе термодинамической системы. Термодинамические процессы: общее понятие. Виды термодинамических процессов

Лекция 2

ПДК выбрососв АЭС 0,05 Зв/год для персонала0,005Зв/год для населения вблизи

Термодинамическая система может произвести полезную работу только при условии, если в ней осуществляется термодинамический процесс. В этом случае изменяются и основные термодинамические параметры Р, v и Т. Термодинамический процесс - это совокупность изменений состояний термодинамической системы при её переходе из одного состояния в другое.

Мы будем рассматривать только равновесные термодинамические процессы , протекающие в равновесных системах. Равновесным состоянием системы называется состояние, когда во всех точках системы давления и температуры одинаковы. Система, выве­денная из состояния равновесия и пре­доставленная при постоянных парамет­рах окружающей среды самой себе, че­рез некоторое время вновь придет в рав­новесное состояние, соответствующее этим параметрам. Процесс, проходящий через чередующиеся равновесные состояния системы называется равновесным процессом .

В противном случае система неравновесна . Все процессы, протекающие в реальном времени, как правило, неравновесны. Допущение о существовании равновесных систем основано на том, что любая система, выве­денная из состояния равновесия и пре­доставленная при постоянных парамет­рах окружающей среды самой себе, че­рез некоторое время вновь придет в рав­новесное состояние. Такое самопроизволь­ное (без внешнего воздействия) возвра­щение системы в состояние равновесия называется релаксацией , а промежуток времени, в течение которого реальная система возвращается в состояние равнове­сия, называется временем релаксации . Если реальный процесс протекает медленнее, чем идёт релаксация, то процесс является равновесным. Дли разных процессов и разных параметров время релаксации различно. Внутренними процессами, компенсирующими нарушение равновесия при измене­ние состояния тела и восстанавливающими термодинамическое равновесие, являются элементарные процессы обмена энергией при столкновении молекул.

Интересно отметить, что превращение энергии поступательного движения молекул в энергию вращательного движения и обратно при столкновении молекул происходит весьма быстро. Так, давление в объёме выравнивается со скоростью звука (более 340 м/с в воздухе при нормальных физических условиях). Температу­ра – значительно медленнее. Связано это с тем, что превращение энергии поступательного или враща­тельного движения молекул в колебательное при росте температуры осуществляется сравнительно медленно. Вообще все процессы обмена энергии, в которых участвуют колебательные степени свободы движе­ния молекул, требуют для своего осуществления сравнительно большого времени.


Рассмотрим, например, процесс сжа­тия газа в цилиндре. Если время смеще­ния поршня от одного положения до дру­гого существенно превышает время ре­лаксации, то в процессе перемещения поршня давление и температура успеют выровняться по всему объему цилиндра. Это выравнивание обеспечивается непре­рывным столкновением молекул, в ре­зультате чего подводимая от поршня к газу энергия достаточно быстро и рав­номерно распределяется между ними. Если последующие смещения поршня бу­дут происходить аналогичным образом, то состояние системы в каждый момент времени будет практически равновесным.

Теоретически равновесный процесс можно осуществить только при бесконечно медленном изменении состояний системы и внешних условий. В этом смысле время как действующий физический фактор в равновесных процессах не применяется.

Уравнение состояния F (Р, v, Т) = 0 в трёхосной системе координат Р, v и Т представляют собой поверхность, называемую термодинамической поверхностью . Если рассечь эту поверхность (рис. 1.8) плоскостями параллельными осям координат, то получим кривые. Например, сечение плоскостью Т = const даёт линию изменения давления в зависимости от объёма в координатах Р и v , Описываемый процесс называется изотермным.
В термодинамике чаще всего применяют двухосную систему с координатами Р и v (рис. 1.9).

Изменение состояния системы, характеризующееся изменением ее термодинамических параметров, называется термодинамическим процессом . Иными словами, если система переходит из исходного состояния в конечное, отличное от исходного, то совершается процесс. Чаще всего в термодинамике рассматриваются следующие процессы:

1) изотермический (T = const ), {греческое therme – жар, теплота};

2) изобарный (р = const ), {греческое baros – тяжесть, вес};

3) изохорный ((V = const ), {греческое chora – пространство};

4) изобарно-изотермический (р = const, Т = const );

5) изохорно-изотермический (V = const, Т = const );

6) адиабатический (отсутствует обмен теплотой между системой и внешней средой).

Процесс, в результате которого система, выйдя из начального состояния и претерпев ряд превращений, вновь в него возвращается, называется круговым процессом или циклом .

Изменение состояния системы может происходить при различных условиях. Поэтому различают в первую очередьравновесные (квазистатические ) и неравновесные процессы. Процесс, рассматриваемый как непрерывный ряд равновесных состояний системы. называется равновесным процессом . При равновесном процессе все параметры системы меняются бесконечно медленно, так что система все время находится в состоянии равновесия.

Чтобы термодинамический процесс осуществлялся квазистатически (равновесно), необходимо выполнение следующих условий :

1. Бесконечно малая разность действующих и противодействующих сил (например, давление в системе на бесконечно малую величину отличается от внешнего давления).

2. Бесконечно медленное течение процесса.

3. Совершение максимальной работы (при неравновесном процессе работа всегда меньше, чем при равновесном и может быть равной нулю – например, расширение идеального газа в вакуум).

4. Изменение внешней силы на бесконечно малую величину меняет направление процесса на обратный.

5. Абсолютные значения работ прямого и обратного процессов одинаковы, а их пути совпадают.

Процесс перехода системы из неравновесного состояния в равновесное называетсярелаксацией , а продолжительность этого процесса – временем релаксации . У различных процессов время релаксации неодинаково: от 10 -7 секунды для установления равновесного давления в газе до нескольких лет при выравнивании концентраций в твердых сплавах.

Следует отметить, что реальные процессы протекают при нарушении равновесия между системой и окружающей средой, при этом возникают потоки энергии и или вещества внутри системы, нарушая в ней равновесие. Поэтому реальные процессы, протекающие с нарушением равновесного состояния системы, являются неравновесными . В классической (феноменологической) термодинамике изучаются только равновесные процессы . Выводы, полученные термодинамикой для равновесных процессов, играют в ней роль своего рода предельных теорем.



Физически бесконечно медленным или квазистатическим (равновесным) изменением какого-либо параметра «а » называют такое его изменение со временем, когда скорость изменения da /dt значительно меньше средней скорости изменения этого параметра при релаксации (здесь t – время). Если при релаксации параметр «а » изменился на Δа , а время релаксации τ , то при равновесных процессах

Если изменение параметра «a » происходит за время t , меньшее или равное времени релаксации τ , так что

то такой процесс является неравновесным или нестатическим .

Кроме понятий равновесных (квазистатических) и неравновесных процессов в термодинамике все процессы делят на обратимые и необратимые . Обратимый термодинамический процесс – процесс перехода термодинамической системы из одного состояния в другое, который может протекать как в прямом, так и в обратном направлении через те же промежуточные состояния без каких бы то ни было изменений в окружающей среде . Если же процесс перехода системы из одного состояние в другое нельзя осуществить в прямом и обратном направлениях без изменения в окружающей среде, то его называют необратимым процессом. Очевидно, что равновесный процесс всегда обратим, а обратимый процесс всегда протекает равновесным путем .

Примеры необратимых процессов :

1. Процесс теплопередачи при конечной разности температур необратим . Обратимый процесс (как равновесный) начинается с состояния равновесия. Наличие разности температур указывает на неравновесность (нестатичность) процесса.

2. Расширение газа в вакуум необратимo , поскольку при таком расширении не совершается работа, а сжать газ так, чтобы не совершить работы, невозможно.

3. Процесс диффузии газов необратим . Если в сосуде с двумя различными газами, разделенными перегородкой, убрать перегородку, то каждый газ будет диффундировать в другой. Для разделения газов каждый из них нужно сжимать. Чтобы они не нагревались, необходимо отнять у них теплоту и превратить в работу, что невозможно без изменения в окружающей среде (второй закон термодинамики).

Под термодинамическим процессом понимается совокупность последовательных состояний, через которые проходит термодинамическая система при ее взаимодействии с окружающей средой.

Состояние термодинамической системы может быть равновесным и неравновесным. Равновесным называется такое состояние системы, при котором во всех точках ее объема все параметры состояния и физические свойства одинаковы (давление, температура, удельный объем и др.). В термодинамике постулируется, что изолированная система с течением времени всегда приходит в состояние термодинамического равновесия и никогда не может самопроизвольно выйти из него.

Все процессы, происходящие в термодинамической системе, подразделяются на равновесные и неравновесные. Равновесными называются такие процессы, когда система проходит ряд последовательных равновесных состояний. Если процесс протекает настолько медленно, что в каждый момент времени устанавливается равновесие, то такие процессы называются квазистатическими. Эти процессы обладают свойствами обратимости.

Неравновесными называются такие процессы, при протекании которых система не находится в состоянии равновесия. Процесс перехода системы из неравновесного состояния в равновесное называется релаксацией, а время перехода в состояние равновесия - временем релаксации.

Все реальные процессы, протекающие в природе, являются неравновесными. Это определяется тем, что при протекании процесса с конечной скоростью в рабочем теле нс успевает установиться равновесное состояние. Например, при быстром расширении газа в цилиндре с поршнем температура и давление в различных точках объема рабочего тела не будут одинаковыми, т.с. будет иметь место неравновесное состояние, а сам процесс будет неравновесным. Следовательно, реальные процессы, будучи неравновесными, могут лишь в той или иной степени приближаться к равновесным, никогда с ними в точности не совпадая.

Однако термодинамика в первую очередь рассматривает равновесные процессы и равновесные состояния, так как только равновесные состояния могут быть описаны количественно с помощью уравнений состояния. Лишь равновесные процессы изменения состояния термодинамической системы можно изображать графически. Всякое произвольно взятое равновесное состояние в трехосной системе координат pvT изображается точкой, а совокупность этих точек при непрерывном изменении состояния - некоторой кривой, представляющей собой графическое изображение равновесного процесса. Однако использовать трехосную систему координат затруднительно, поэтому на практике пользуются проекциями кривых трехосной системы на плоскости в прямоугольной системе координат. В технической термодинамике для исследования равновесных термодинамических процессов наиболее часто применяют двухосную систему координат pv. В этой системе координат вертикаль изображает изохорный процесс, горизонталь - изобарный, кривая вида гиперболы - изотермический (рис. 1.2). Кроме того,

Рис. 1.2.

в термодинамике рассматриваются процессы адиабатный , совершающийся при отсутствии теплообмена (dq = 0) и политропный (обобщающий процесс), частными случаями которого являются первые четыре процесса.

Любой параметр состояния является также функцией состояния, так как его изменение в любом термодинамическом процессе не зависит от вида процесса, а определяется лишь начальным и конечным состояниями.

К термодинамическим процессам относится также круговой процесс , или цикл. Циклом называется совокупность процессов, возвращающих систему в первоначальное состояние. На диаграммах цикл изображается замкнутым контуром, вид которого полностью определяется числом и формой составляющих цикл процессов. Графическое изображение и изучение циклов в пространственной системе координат было бы еще более трудным, чем изображение отдельных процессов. Поэтому цикл также проектируется на одну из координатных плоскостей.

Переход физической системы из одного («начального») состояния в другое («конечное») через какую-то последовательность промежуточных состояний называется процессом. Однако при классификации процессов, происходящих в объеме данной термодинамической системы, необходимо учитывать также и те изменения, которые происходят в окружающих телах (взаимодействующих с данной системой). Процесс называется обратимым, если выполняются два условия:

1) если изменения в системе можно провести в обратном направлении через те же промежуточные состояния, через которые проходила система в прямом направлении;

2) если при обратном переходе не только сама система, но и все связанные с нею окружающие тела в точности возвращаются в первоначальное состояние.

Процесс называется равновесным, если начальное, конечное и все промежуточные состояния системы являются равновесными. Таким образом, для равновесности процесса, происходящего внутри термодинамической системы, существование или отсутствие «остаточных изменений» в окружающих телах имеет значения; важно только,

чтобы каждое из промежуточных состояний системы было равновесным.

Для иллюстрации рассмотрим процесс расширения и сжатия газа, заключенного в цилиндре с поршнем (рис. 11.3).

Если поршень смещается вправо или влево очень медленно, то давление и температура газа в различных местах объема газа успевают выравниваться: следовательно, каждое промежуточное состояние можно считать с удовлетворительной точностью равновесным. Такие процессы можно провести как в одном (например, расширение), так и в обратном (сжатие) направлениях через одни и те же промежуточные состояния с одинаковыми давлениями и температурами по всему объему тела.

При быстром сжатии и расширении промежуточные состояния не будут равновесными. При быстром сжатии давление и температура вблизи поршня больше, чем вдали от поршня так как для выравнивания давления и температуры всегда требуется некоторое время. При быстром расширении, наоборот, давление и температура вблизи поршня меньше, чем вдали. Таким образом, промежуточные состояния в обоих процессах оказываются неравновесными вследствие того, что процессы выравнивания температур и давлений не происходят «мгновенно».

Скорость изменения состояния термодинамической системы определяется не только скоростью внешнего воздействия (в данном примере - скоростью поршня, изменяющего объем газа), но и скоростью внутренних процессов выравнивания температур и давлений (т. е. скоростью релаксации). Вопрос о том, является ли изучаемый процесс «медленным» или «быстрым», зависит от соотношения между скоростями внешнего воздействия и релаксации. Промежуточные состояния могут быть равновесными только в двух предельных случаях: 1) если скорость внешнего воздействия бесконечно мала и 2) если скорость процессов релаксации бесконечно велика.

Примером необратимых процессов являются процессы расширения или сжатия, происходящие при наличии трения. Рассмотрим еще раз расширение и сжатие газов в цилиндре с поршнем (рис. 11.3). Если бы эти процессы происходили равновесно и без трения, то работа, совершаемая газом при расширении в точности равнялась бы внешней работе, необходимой для сжатия. При наличии же трения (даже если оба процесса происходят достаточно медленно) работа, совершаемая газом при расширении, будет меньше а работа внешних сил, затрачиваемая на сжатие газа, будет больше, чем Обозначим через количество теплоты, которое выделилось при трении поршня о стенки цилиндра в процессе расширения. Для простоты рассуждений допустим, что эта теплота идет только на нагревание цилиндра и поршня. Для того чтобы процесс сжатия был в точности обратным процессу расширения, необходимо, чтобы при сжатии теплота была отнята от цилиндра и поршня, превращена в механическую энергию

и передана тому «механизму», который производит сжатие газа. Такой способ возвращения к первоначальному состоянию оказывается невозможным; поршень и цилиндр нагреваются также и при сжатии, а в окружающей среде фиксируются «остаточные изменения» - превращение некоторого количества механической энергии в теплоту (важно подчеркнуть, что теплота, выделившаяся при трении, не может быть превращена в механическую энергию без новых «остаточных изменений» в окружающей среде; см. ч. II, § 7).

Таким образом, все процессы, происходящие при наличии трения, являются необратимыми. Превращение механической энергии в тепловую при трении является односторонним процессом; его невозможно провести в обратном направлении, при котором теплота, выделившаяся при трении, могла бы превратиться в механическую работу без каких-либо остаточных изменений в системе и в окружающих телах.

Другим важным примером необратимых процессов является теплообмен между телами, имеющими различные температуры. Допустим, что в течение «прямого» процесса между двумя какими-нибудь телами, входящими в состав системы, существует конечная разность температур и теплота переходит от тела с высокой температурой к телу с низкой температурой. При «обратном» процессе теплота, полученная холодным телом, должна быть возвращена горячему телу, с тем чтобы было восстановлено первоначальное состояние системы. Путем одной только теплопроводности такая передача теплоты от холодных тел к горячим невозможна.

Обратимые процессы имеют большое значение в теоретической термодинамике как идеальные процессы перехода систем из одного состояния в другое. Перечислим основные условия, необходимые для того, чтобы процесс был обратимым:

1) каждое промежуточное состояние системы должно быть равновесным;

2) в системе должно отсутствовать внутреннее трение, т. е. одностороннее превращение механической энергии в тепловую;

3) в системе не должны происходить односторонние химические реакции, например горение;

4) разность температур между соприкасающимися телами внутри системы, а также между системой и окружающими телами должна быть бесконечно малой. В частности, если система получает теплоту из окружающей среды, то температура источника тепла должна быть больше температуры системы также на бесконечно малую величину. Благодаря этому процесс теплопередачи протекает бесконечно медленно и поэтому будет равновесным и обратимым процессом.

Ранее мы уже рассматривали некоторые вопросы, связанные с понятием термодинамического процесса. Здесь рассмотрим его более детально.

Термодинамическим процессом называется переход системы из одного состояния в другое в результате ее взаимодействия с окружающей средой. Как и всякий процесс, термодинамический процесс есть последовательная смена состояний системы.

Термодинамика различает два основных типа процессов: равновесные и неравновесные .

В принципе, всякий переход из одного состояния в другое всегда связан с нарушением равновесия системы. Более того, протекание любого без исключения процесса, возможно только тогда, когда имеется некоторая начальная неравновесность - разность температур, давлений, концентраций вещества, энергетических, информационных и других потенциалов. Но в пределе, при бесконечно медленном протекании процесса параметры состояния в каждый момент времени всегда будут иметь определенное значение. Такой процесс есть равновесный или квазистатический процесс.

Таким образом, равновесным в термодинамическом смысле является такое состояние изолированной системы, в которое она переходит по истечении достаточно большого промежутка времени.

2. Поскольку бесконечно медленный процесс есть абстракция, практически равновесным можно считать такой процесс, при котором переход из состояния в состояние происходит настолько медленно, что отклонения значений параметров становятся пренебрежимо малыми.

Следовательно, равновесный процесс представляет собой непрерывную цепь равновесных (точнее – близких к равновесию) состояний, которые последовательно сменяют одно другое.

Именно такие процессы и называют квазистатическими (Каратеодори, 1955) или равновесными.

В противном случае мы имеем неравновесный процесс, который является предметом изучения термодинамики неравновесных процессов (неравновесной термодинамики).

3. Всякий равновесный процесс является обратимым, то есть таким, который можно совершить как в прямом, так и в обратном направлении: тело, переведенное в результате последовательной смены ряда равновесных состояний в некоторое конечное состояние, может быть вновь возвращено в исходное состояние путем последовательной смены равновесных состояний, но проведенной в обратном порядке. При этом в окружающей среде не останется никаких изменений.

В противном случае мы имеем необратимый процесс, каковым, например, является всякое развитие.

4. Абсолютная обратимость или необратимость есть предельные абстракции, которые в природе в «чистом» виде не существуют, как не существует только обратимые и только необратимые процессы. Они есть диалектическое единство.

Рассматривая эту проблему, В.И.Корюкин вводит понятия «принципиальной обратимости» и «локальной необратимости».

Принципиальную обратимость, в отличие от полной обратимости можно охарактеризовать следующими положениями:

Ø обратимость не есть полное повторение точный возврат к предыдущим этапам движения;

Ø всеобщий характер обратимости не означает прямых возвратов и прямых переходов от одного вида материи в другой;

Ø возвращение к исходному состоянию из достигнутого не означает повторения в обратном порядке всех этапов движения к состоянию, с которого начался возврат.

Ø принципиальная обратимость всегда связана с локальной необратимостью, с отсутствием точной повторяемости; каждое явление своеобразно и, строго говоря, необратимо. И в то же время любое локально необратимое изменение есть момент в цепи процессов, ведущих к повторению в главном;

Ø локальную необратимость можно рассматривать как форму проявления принципиальной (всеобщей) обратимости (превращаемости).

Поскольку, мы рассматриваем явления в ограниченном, локальном масштабе – все исследуемые нами процессы есть необратимые процессы. Обратимые процессы рассматриваются в качестве предельной идеализации, как вполне удобная модель при исследовании целого ряда явлений.

5. В силу большой важности этой предельной идеализации остановимся на анализе обратимых процессов несколько подробнее. Для этого рассмотрим обратимый процесс с закрытой термомеханической системой.

Взаимодействие такой системы с окружающей средой состоит в обмене теплотой и работой. Элементарное количество энергетического воздействия , приходящееся на каждую степень свободы, в механике выражают в виде произведения соответствующей обобщенной силы на элементарное приращение сопряженной с ней обобщенной координаты

Ранее мы встречались с этими понятиями, но теперь рассмотрим их несколько более детально.

Под обобщенной силой понимается параметр, который по физическому смыслу является движущей силой рассматриваемого воздействия. Воздействие имеет место, если по обе стороны контрольной поверхности (например, границы системы и окружающей среды) численные значения этого параметра различны. Для квазистатических процессов это различие должно быть бесконечно малым.

Обобщенная координата – параметр, который изменяется только под воздействием данного типа. Если рассматриваемое воздействие отсутствует, то изменение соответствующей обобщенной координаты равно нулю. Таким образом, изменение обобщенной координаты есть мера воздействия рассматриваемого типа.

Рассмотрим некоторые примеры для удельных величин (величины, отнесенные к единице рабочего тела термодинамической системы, к примеру, в расчете на 1 килограмм идеального газа). Удельные значения величин обозначаем соответствующими малыми знаками.

1) В случае деформационного воздействия (работа) роль обобщенной силы играет давление, а сопряженной обобщенной координаты – объем. Тогда

2) При обмене энергией в форме теплоты (теплообмен) обобщенной силой является абсолютная температура, а обобщенной координатой – энтропия (также удельная):

6. Отличительной особенностью обратимого процесса является то, что при полном его осуществлении в прямом и обратном направлении (по замкнутому циклу) отсутствуют какие-либо остаточные изменения в системе и окружающей среде, поскольку, те изменения, которые были произведены в прямом процессе (например, накопленная теплота) «стираются» в ходе обратного процесса.

Процесс, не обладающий этим свойством, есть необратимый процесс. Если система совершает необратимый процесс, то ее возвращение в исходное состояние требует дополнительных затрат со стороны окружающей среды. К примеру, работа, совершенная системой в необратимом процессе, всегда недостаточна для ее возвращения в исходное состояние; требуется приток дополнительной энергии.

Поэтому развитие всегда есть необратимый процесс. Как писал Макс Планк «с каждым необратимым процессом система делает некоторый такой шаг вперед, следы которого ни при каких обстоятельствах не могут быть уничтожены».

7. Тип термодинамического процесса, как правило, определяется постоянством какого-либо параметра состояния

1)Адиабатический процесс - термодинамический процесс, протекающий в системе без теплообмена с окружающей средой (), то есть в адиабатически изолированной системе, состояние которой можно изменить только путем изменения внешних параметров. Изменение температуры внешних тел не оказывает влияния на адиабатически изолированные системы, а их энергия может изменяться только за счет работы, совершенной системой (или над ней).

Согласно первому началу термодинамики (см. далее) при обратимом адиабатном процессе:

Согласно второму началу термодинамики (см. далее) для адиабатического процесса:

причем знак равенства относится только к обратимому процессу. При необратимом процессе энтропия возрастает.

Поэтому обратимый адиабатический процесс называется еще изоэнтропийным процессом.

2) Изобарный (изобарический) процесс – процесс, протекающий при постоянном давлении в системе.

Для его осуществления к системе необходимо подводить (или отводить) теплоту , которая расходуется на работу расширения и изменение внутренней энергии , то есть:

3) Изотермический процесс – процесс, протекающий при постоянстве температуры системы. Такой процесс может быть осуществлен только при температурном контакте системы с внешней средой (термостатом). Для реализации изотермического процесса необходимо отводить или подводить к системе определенное количество теплоты , которое затрачивается на работу при изменении объема и на изменение внутренней энергии при постоянной температуре .

Согласно первому началу термодинамики (см. далее)

4) Изохорный (изохорический) процесс – термодинамический процесс, протекающий в системе при постоянном объеме. При этом процессе система не совершает работы и вся подводимая теплота целиком расходуется на изменение внутренней энергии системы.

5) Изоэнтальпийный процесс – термодинамический процесс, протекающий при постоянной энтальпии системы, например, протекание газа через пористую перегородку при отсутствии теплообмена с окружающей средой.

2024 english-speak.ru. Изучение английского языка.