Основные типы кинематических пар. Виды кинематических пар и их краткая характеристика. Основные виды механизмов

СТРОЕНИЕ МЕХАНИЗМОВ

Основные понятия и определения.

Система терминов обеспечивает единообразный подход к описанию любой системы знаний. Поэтому начнем с уточнения смысла и значения используемых формулировок.

Механизм - система тел, предназначенных для преобразования движения одного или нескольких твердых тел и (или) сил, действующих на них, в требуемые движения других тел и (или) сил. В теории механизмов и машин под твердыми телами понимают как абсолютно твердые, так и деформируемые тела.

Машина – устройство, выполняющее механические движения для преобразования энергии, материалов и информации. Под материалами подразумевают объекты труда: обрабатываемые изделия, перемещаемые грузы и др.

Деталь – изделие, изготовленное из единообразного, по наименованию и марки материала, без применения сборочных операций.

Звено – твердое тело, участвующее в заданном преобразовании движения. Звено может состоять из нескольких деталей, не имеющих между собой относительного движения.

Стойка - звено, принимаемое условно за неподвижное.

Входное звено - звено, которому сообщается движение, преобразуемое механизмом в требуемые движения других звеньев.

Выходное звено - звено, совершающее движение, для выполнения которого предназначен механизм.

Начальное звено – звено, которому приписывается одна или несколько обобщенных координат механизма.

Обобщенная координата механизма - каждая из независимых между собой координат, определяющих положение всех звеньев механизма относительно стойки.

Число степеней свободы механизма –число обобщенных координат механизма.

Связь – любое условие, которое уменьшает число степеней свободы механизма. Любую связь можно отбросить, заменив ее действие реакцией.

Избыточная связь – связь, устранение которой не изменяет число степеней свободы механизма.

Кинематическая пара – соединение двух твердых тел механизма, допускающее их заданное относительное движение. Условием существования пары является: наличие двух звеньев, их контакт и относительное движение звеньев.

Кинематическая цепь – система звеньев и (или) твердотельных элементов механизма, образующих между собой кинематические пары. Различают кинематические цепи незамкнутые и замкнутые . Незамкнутой называется такая кинема­тическая цепь, у которой имеется хотя бы одно звено, входящее только в одну кинематическую пару. У замкнутой цепи нет звеньев, имеющих свободные элементы кинематических пар. Каждое звено такой цепи входит хотя бы в две пары.

Элемент механизма – твердотельный, жидкостный или газовый компонент механизма, обеспечивающий взаимодействие его звеньев, не контактирующих непосредственно друг с другом.

Элемент сопряжения кинематической пары – общая поверхность, линия или точка, образуемая сопрягаемыми элементами двух других тел.

Число степеней свободы (подвижность) кинематической пары (Н) – число независимых координат, необходимых для описания относительного положения звеньев кинематических пар.

Известно, что свободно движущееся тело в пространстве обладает шестью степенями свободы. Число условий связи S , наложенных на относительное движение звена ки­нематической пары может изменяться в пределах . Различают одно-, двух-, трех, четырех- и пяти-подвижные кинематические пары. Следовательно, имеет место соотноше­ние H = 6 – S.

Одноподвижная пара – кинематическая пара с одной степенью свободы в относительном движении соединяемых твердых тел.

Двухподвижная пара – кинематическая пара с двумя степенями свободы в относительном движении соединяемых твердых тел.

Трехподвижная пара – кинематическая пара с тремя степенями свободы в относительном движении соединяемых твердых тел.

Четырехподвижная пара – кинематическая пара с четырьмя степенями свободы в относительном движении соединяемых твердых тел.

Пятиподвижная пара – кинематическая пара с пятью степенями свободы в относительном движении соединяемых твердых тел.

Структурная формула – алгебраическое выражение, устанавливающее связь между числом степеней свободы механизма, числом подвижных звеньев, числом и подвижностью кинематических пар.

Группа Ассура – кинематическая цепь, присоединение которой к механизму или ее отсоединение образует механизм, имеющий подвижность, равную подвижности исходного механизма, не разделяемая на другие цепи с теми же свойствами.

Масштабный коэффициент – отношение численного значения физической величины в свойственных ей единицах к длине отрезка (мм), изображающего эту величину (на схеме, графике и т.п.).

Масштаб – величина, обратная масштабному коэффициенту.

Классификация кинематических пар

1. В зависимости от числа Н различают одно-, двух-, трех-, четырех-, и пятиподвижные кинематические пары. Число уравнений связей принимают за номер класса.

2. По характеру соприкосновения элементов звеньев (точнее виду элемен­тов) пары делят на низшие и высшие (предложение Ф. Рело). К низшим отно­сят кинематические пары, элементами которых являются поверхности (рис 1.2). Элементами высших пар являются линии или точки (рис 1.2).

3. По характеру сопряжения различают кинематические пары с силовым замыканием (соприкосновение звеньев обеспечивается действием какой - либо силы, например, веса или пружины) и кинематическим (постоянный контакт звеньев достигается за счет конструктивной формы элементов).

4. В зависимости от характера относительного движения звеньев кинематические пары подразделяют на поступательные, вращательные, винтовые, цилиндрические, сферические, плоскостные.

На рис. 1.1 изображены одноподвижные пары (кинематические пары V класса) рассмотрим их подробнее.

в
б
а

Рис 1.1. Одноподвижные кинематические пары.

Пара одноподвижная :

1) Вращательная (рис. 1.1. а) – цилиндрический шарнир. Наложено пять условий связи: исключены все движения, кроме вращательного.

2) Поступательная (рис. 1.1. б) – наложено пять условий связи: исключены все движе­ния, кроме одного поступательного.

3) Винтовая (рис. 1.1. в) – наложено пять условии связи: исключены все движения, кро­ме поступательного. (Вращение не вносит степени свободы, т.к. в данном слу­чае поступательное и вращательное движения не независимы).

На рис. 1.2 изображены пары двух-, трех-, четырех-, и пятиподвижные (кинематические пары IV, III, II и I классов) рассмотрим их подробнее.


а
в
г
б

Рис 1.2. Кинематические пары

Пара двуподвижная (рис. 1.2.а) - втулка на валике. Наложено четыре условия связи, исключе­ны поступательные и вращательные движения вдоль осей О Х и О Z .

Пара трехподвижная (рис. 1.2.б) - шаровой цилиндр. Наложено три условия связи: исключены поступательные движения вдоль всех трёх осей.

Пара четырехподвижная (рис. 1.2.в)- цилиндр на плоскости. Наложено два усло­вия связи: исключено поступательное движение вдоль оси O Z и вращательное вокруг оси O X .

Пара пятиподвижная (рис. 1.2.г) - шар на плоскости. Наложено одно условие связи: исключено поступательное движение вдоль оси O Z .

Кинематическая пара

подвижное сопряжение двух твёрдых звеньев, налагающее ограничения на их относительное движение условиями связи. Каждое из условий связи устраняет одну Степень свободы , то есть возможность одного из 6 независимых относительных движений в пространстве. В прямоугольной системе координат возможно 3 поступательных движения (в направлении 3 осей координат) и 3 вращательных (вокруг этих осей). По числу условий связи S К. п. делятся на 5 классов. Число степеней свободы К. п. W=6 -S . Внутри каждого класса К. п. делятся на виды по оставшимся возможным относительным движениям звеньев. По характеру соприкосновения звеньев выделяют низшие К. п. - с контактом по поверхностям, и высшие - с контактом по линиям или в точках. Высшие К. п. возможны всех 5 классов и многих видов; низшие - только 3 классов и 6 видов (рис.1 ). Различают также геометрически замкнутые и незамкнутые К. п. В первых постоянное соприкосновение поверхностей обеспечивается формой их элементов (например, все К. п. на рис. 1 ), во вторых - для замыкания требуется прижимающая сила, т. н. силовое замыкание (например, в кулачковом механизме). Условно к К. п. относят некоторые подвижные сопряжения с несколькими промежуточными телами качения (например, шарико- и роликоподшипники) и с промежуточными деформируемыми элементами (например, так называемые безлюфтовые шарниры приборов с плоскими пружинами; рис. 2 ).

Н. Я. Ниберг.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Кинематическая пара" в других словарях:

    Соединение 2 звеньев механизма, допускающее их относительное движение. Кинематическая пара, в которой звенья соприкасаются по поверхности, называется низшей (напр., вращательная шарнир, поступательная ползун и направляющая). Кинематическая пара,… … Большой Энциклопедический словарь

    кинематическая пара - пара Соединение двух соприкасающихся звеньев, пускающее их относительное движение. [Сборник рекомендуемых терминов. Выпуск 99. Теория механизмов и машин. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теория… … Справочник технического переводчика

    кинематическая пара - кинематическая пара; пара Соединение двух соприкасающихся звеньев, допускающее из относительное движение …

    Соединение 2 звеньев механизма, допускающее их относительное движение. Кинематическая пара, в которой звенья соприкасаются по поверхности, называется низшей (например, вращательная шарнир, поступательная ползун и направляющая). Кинематическая… … Энциклопедический словарь

    - … Википедия

    кинематическая пара - kinematinė pora statusas T sritis fizika atitikmenys: angl. kinematic pair vok. kinematisches Elementenpaar, n rus. кинематическая пара, f pranc. paire cinématique, f … Fizikos terminų žodynas

    Соединение двух соприкасающихся звеньев, допускающее их относит. движение. Поверхности, линии, точки, к рыми звено может соприкасаться с др. звеном, наз. элементами звена. К. п. делят на низшие (соприкосновение поверхностями) и высшие… … Большой энциклопедический политехнический словарь

    кинематическая пара - kinematic pair Соединение двух твердых тел механизма, допускающее их заданное относительное движение. Шифр IFToMM: 1.2.3 Раздел: ОБЩИЕ ПОНЯТИЯ ТЕОРИИ МЕХАНИЗМОВ И МАШИН … Теория механизмов и машин

    пара - кинематическая пара; пара Соединение двух соприкасающихся звеньев, допускающее из относительное движение. пара сил; пара Система двух параллельных сил, равных по модулю и направленных в противоположные стороны … Политехнический терминологический толковый словарь

    высшая пара - Кинематическая пара, в которой требуемое относительное движение звеньев может быть получено только соприкасанием её элементов по линиям и в точках … Политехнический терминологический толковый словарь

Кинематической парой называется подвижное соединение двух соприкасающихся звеньев обеспечивающее их определенное относительное движение. Элементами кинематической пары называют совокупность Поверхностей линий или точек по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую Пару. Чтобы пара существовала элементы входящих в нее звеньев должны находиться в постоянном контакте Т.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция N 2

Каким бы не был механизм машины он всегда состоит только из звеньев и кинематических пар.

Условия связи, налагаемые в механизмах на подвижные звенья, в теории машин и механизмов Принято называть кинематическими парами.

Кинематической парой называется подвижное соединение двух соприкасающихся звеньев, обеспечивающее их определенное относительное движение.

В табл. 2.1 приведены названия, рисунки, условные обозначения наиболее распространенных на практике кинематических пар, а также произведена их классификация.

Звенья при объединении их в кинематическую пару могут соприкасаться между собой по поверхностям, линиям и точкам.

Элементами кинематической пары называют совокупность Поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев и которые образуют кинематическую Пару. В зависимости от вида контакта элементов кинематических пар различают высшие и низшие кинематические пары.

Кинематические пары, образованные элементами в виде линии или точки,называются высшими .

Кинематические пары, образованные элементами в виде поверхностей, называются низшими.

Чтобы пара существовала, элементы входящих в нее звеньев должны находиться в постоянном контакте, Т.е. быть замкнутыми. Замыкание кинематических пар может быть геометрически или силовым , Например, с помощью собственной массы, пружин и т.п..

Прочность, износостойкость и Долговечность кинематических пар зависят от их вида и конструктивного исполнения. Низшие пары более износостойкие, чем высшие. Это объясняется тем, что в низших Парах контакт элементов пар происходит по поверхности, а следовательно, при одинаковой нагрузке в ней возникают меньшие удельные давления, чем в высшей. Износ, при прочих равных условиях, Пропорционален удельному давлению, а поэтому низшие Пары изнашиваются Медленнее, Чем высшие. Поэтому с целью уменьшения износа в машинах предпочтительнее использование низших пар, однако часто применение высших кинематических пар позволяет значительно упростить структурные схемы машин, что снижает их Габариты и упрощает конструкцию. Поэтому правильный выбор кинематических пар является сложной инженерной задачей.

Кинематические Пары разделяют также по числу степеней свободы (подвижности) , которые она предоставляет соединенным посредством ее звеньям, или по числу условий связей (класс пары ), налагаемых парой на относительное движение соединяемых звеньев. При использовании такой классификации разработчики машин получают сведений о возможных относительных движениях звеньев и о характере взаимодействия силовых факторов между элементами пары.

Свободное звено, находящееся в общем случае в М - мерном пространстве, Допускающем П видов простейших движений, обладает числом степеней свобода! (Н ) или W - подвижно.

Так, если звено находится в трехмерном пространстве, допускающем шесть видов Простейших движений - три вращательных и три поступательных вокруг и вдоль осей X , V , Z , то говорят, что оно обладает шестью степенями свободы или имеет шесть обобщенных координат, или шестиподвижно. Если звено находится в двухмерном пространстве, допускающем три вида простейших движений - одно вращательное вокруг Z и два поступательных вдоль осей X и Y , то говорят, что оно имеет три степени свободы, или три обобщенные координаты, или оно трехподвижно и т. д..

Таблица 2.1

При объединении звеньев с помощью кинематических пар они лишаются степеней свободы. Значит, кинематические пары налагают на соединяемые ими звенья связи числом S .

В зависимости от числа степеней свободы, которым обладают в относительном движении звенья, объединенные в кинематическую пару, определяют подвижность пары (W =Н ). Если Н - число степеней свободы звеньев кинематической пары в относительном движении, to подвижность пары определится следующим образом:

где П - подвижность пространства, в котором.существует рассматриваемая пара; S - число налагаемых парой связей.

Следует заметить, что подвижность пары W , определенная по (2.1), зависит не от вида пространства, в котором она реализуется, а только от конструкции.

Например, вращательная (поступательная) (см, табл. 2.1) пара как в шести-, так и в трехподвижном пространстве, все равно останется одноподвижной, в первом случае на нее будет наложено 5 связей, а во втором случае - 2 связи, и, значит, будем иметь, соответственно:

для шестиподвижного пространства:

для трехподвижного пространства:

Как видим, подвижность кинематических пар не зависит от характеристик пространства, что является преимуществом данной классификации. Напротив, часто встречающееся деление кинематических пар на классы страдает тем, что класс пары зависит от Характеристик пространства, а значит, одна и та же пара в разных пространствах имеет разный класс. Это неудобно для практических целей, значит, такая Классификация кинематических пар нерациональна, поэтому ее лучше не применять.

Можно подобрать такую форму элементов пары, чтобы при одном независимом простейшем движений возникало второе - зависимое (производное). Примером такой кинематической пары является винтовая (табл. 2 . 1) . В этой паре вращательное движение винта (гайки) вызывает поступательное его (ее) перемещение вдоль оси. Такую пару следует отнести к одноподвижной, Так как в ней реализуется всего одно независимое простейшее Движение.

Кинематические соединения.

Кинематические пары, приведенные в табл. 2.1, просты и компактны. Они реализуют практически все, необходимые при создании механизмов простейшие относительные перемещения звеньев. Однако при создании машин и механизмов они применяются редко. Это обусловлено тем, что в точках соприкосновения звеньев, образующих пару, обычно возникают большие силы Трения. Это приводит к значительному износу элементов пары, а значит, к ее разрушению. Поэтому простейшую двухзвенную кинематическую цепь кинематической пары часто заменяют более длинными кинематическими цепями, Которые в совокупности реализуют то же самое относительное движение звеньев, что и заменяемая кинематическая пара.

Кинематическая цепь, предназначенная для замены кинематической пары, называется кинематическим соединением .

Приведем примеры кинематических цепей, для наиболее распространенных на практике вращательной, поступательной, винтовой, сферической и плоскость-плоскость кинематических пар.

Из табл. 2.1 видно, что простейшим аналогом вращательной кинематической пары является подшипник с телами качения. Аналогично, роликовые направляющие заменяют поступательную пару и т.д.

Кинематические соединения удобнее и надежнее в эксплуатации, выдерживают значительно большие силы (моменты) и позволяют механизмам работать при высоких относительных скоростях звеньев.

Основные виды механизмов.

Механизм Можно рассматривать как частный случай кинематической цепи, у которой, как минимум, одно звено обращено в стойку, а движение остальных звеньев определено заданным движением входных звеньев.

Отличительными особенностями кинематической цепи, представляющей механизм, являются подвижность и определенность движения ее звеньев относительно стойки.

Механизм может иметь несколько входных и одно выходное звено, в этом случае он называется суммирующим механизмом, и, наоборот, одно входное и несколько выходных, тогда он называется дифференцирующим механизмом.

По назначению Механизмы разделяются на направляющие и передаточные .

Передаточным механизмом называется устройство, предназначенное для воспроизведения заданной функциональной зависимости между перемещениями входного и выходного звеньев.

Направляющим механизмом называют механизм, у которого траектория определенной точки звена, образующего кинематические пары только с подвижными звеньями, совпадает с заданной кривой.

Рассмотрим основные виды механизмов, нашедших широкое применение в технике.

Механизмы, звенья которых образуют только низшие кинематические пары, называют шарнирно-рычажными . Эти механизмы нашли широкое применение благодаря тому, что они долговечны, надежны и просты в эксплуатации. Основным представителем таких Механизмов является шарнирный четырехзвенник (рис.2.1).

Названия механизмов обычно определяются по названиям их входного и выходного звеньев или характерного звена, входящего в их состав.

В зависимости от законов движения входного и выходного звеньев этот механизм может называться кривошипно-коромысловым, двойным кривошипным, двойным коромысловым, коромыслово-кривошипным.

Шарнирный четырехзвенник применяется в станкостроении, приборостроении, а также в сельскохозяйственных, пищевых, снегоуборочных и других машинах.

Если заменить в шарнирном четырехзвеннике вращательную пару, например D , на поступательную, то получим широко известный кривошипно-ползунный механизм (рис. 2.2).

Рис. 2.2. Различные виды кривошипно-ползунных механизмов:

1 – кривошип 2 - шатун; 3 - ползун

Кривошипно-ползунный (ползунно-кривошипный) механизм нашел широкое применение в компрессорах, насосах, двигателях внутреннего сгорания и других машинах.

Заменив в шарнирном четырехзвеннике вращательную пару С на поступательную, получим кулисный механизм (рис. 2.3).

На p и c .2.3, в кулисный механизм получен из шарнирного четырехзвенника путем замены в нем вращательных пар С и О на поступательные.

Кулисные механизмы нашли широкое применение в строгальных станках благодаря присущему им свойству асимметрии рабочего и холостого хода. Обычно у них длительный рабочий ход и быстрый, обеспечивающий возврат резца в исходное положение холостой ход.

Рис. 2.3. Различные виды кулисных механизмов:

1 – кривошип; 2 – камень; 3 – кулиса.

Большое применение шарнирно-рычажные механизмы нашли в робототехнике (рис. 2.4).

Особенностью этих механизмов является то, что они обладают большим числом степеней свободы, а значит, имеют много приводов. Согласованная работа приводов входных звеньев обеспечивает перемещение схвата по рациональной траектории и в заданное место окружающего пространства.

Широкое применение в технике получили кулачковые механизмы . При помощи кулачковых механизмов конструктивно Наиболее просто можно Получить практически любое движение ведомого звена по заданному закону,

В настоящее время существует большое число разновидностей кулачковых механизмов, некоторые из которых представлены на рис. 2.5.

Необходимый закон движения выходного звена кулачкового механизма достигается за счет придания входному звену (кулачку) соответствующей формы. Кулачок может совершать вращательное (рис. 2.5, а, б ), поступательное (рис. 2.5, в, г ) или сложное движение. Выходное звено, если оно совершает поступательное движение (рис.2.5, а, в ), называют толкателем, а если качательное (рис. 2.5, г ) - коромыслом. Для снижения потерь на трение в высшей кинематической паре В применяют дополнительное звено-ролик (рис. 2.5, г ).

Кулачковые механизмы применяются как в рабочих машинах, так и в разного рода командоаппаратах.

Очень часто в металлорежущих станках, прессах, различных приборах и измерительных устройствах применяются винтовые механизмы, простейший из которых представлен на рис. 2.6:

Рис. 2.6 Винтовой механизм:

1 - винт; 2 - гайка; А, В, С - кинематические пары

Винтовые механизмы обычно применяются там, где необходимо преобразовать вращательное движение в взаимозависимое поступательное или наоборот. Взаимозависимость движений устанавливается правильным подбором геометрических параметров винтовой пары В .

Клиновые механизмы (рис.2.7) применяются в различного вида зажимных устройствах и приспособлениях, в которых требуется создать большое усилие на выходе при ограниченных силах, действующих на входе. Отличительной особенностью этих механизмов являются простота и надежность конструкции.

Механизмы, в которых передача движения между соприкасающимися телами осуществляется за счет сил трения, называются фрикционными. Простейшие трехзвенные фрикционные механизмы представлены на рис. 2.8

Рис. 2.7 Клиновый механизм:

1, 2 - звенья; Л, В, С - кинематические пиры.

Рис. 2.8 Фрикционные механизмы:

а - фрикционный механизм с параллельными осями; б - фрикционный механизм с пересекающимися» осями; в - реечный фрикционный механизм; 1 - входной ролик (колесо);

2 – выходной ролик (колесо); 2"- рейка

Вследствие того что звенья 1 и 2 прижиты друг к другу, по линии касания между ними возникает сила трения, которая увлекает за собой ведомое звено 2 .

Широкое применение фрикционные передачи получили в приборах, лентопротяжных механизмах, вариаторах (механизмах с плавной регулировкой числа оборотов).

Для передачи вращательного движения по заданному закону между валами с параллельными, пересекающимися и перекрещивающимися осями применяются различного вида зубчатые механизмы . При помощи зубчатых колес можно осуществлять передачу движения как между валами с неподвижными осями , так и с перемещающимися в пространстве .

Зубчатые механизмы применяют для изменения частоты и направления вращения выходного звена, суммирования или разделения движений.

На рис. 2.9 показаны основные представители зубчатых передач с неподвижными осями.

Рис 2.9. Зубчатые передачи с неподвижными осями:

а - цилиндрическая; б - коническая; в - торцовая; г - реечная;

1 - шестерня; 2 - зубчатое колесо; 2 * рейка

Меньшее из двух зацепляющихся зубчатых колес называют шестерней , а большее - зубчатым колесом .

Рейка является частным случаем зубчатого колеса у которого радиус кривизны равен бесконечности.

Если в зубчатой передаче имеются зубчатые колесе с подвижными осями, то их называют планетарными (рис. 2.10):

Планетарные зубчатые передачи но сравнению с передачами с неподвижными осями позволяют передавать большие мощности и передаточные числа при меньшем числе зубчатых колес. Они также широко применяются при создании суммирующих и дифференциальных механизмов.

Передача движений между перекрещивающимися осями осуществляется с помощью червячной передачи (рис. 2.11).

Червячная передача получается из передачи винт-гайка путем продольной разрезки гайки и ее двукратного сворачивания во взаимно перпендикулярных плоскостях. Червячная передача обладает свойством самоторможения и позволяет в одной ступени реализовывать большие передаточные отношения.

Рис. 2.11. Червячная передача:

1 - червяк, 2 - червячное колесо.

К зубчатым механизмам прерывистого движения относятся также механизм мальтийского креста. На рис. З-Л"2. показан механизм четырех лопастного "мальтийского креста".

Механизм "мальтийского креста" преобразует непрерывное вращения ведущего эвена - кривошипа 1 с цевкой 3 в прерывистое вращение "креста" 2 , Цевка 3 без удара входит в радиальный паз "креста" 2 и поворачивает его на угол, где z -число пазов.

Для осуществления движения только в одном направлении применяют храповые механизмы. На рис.2,13 показан храповый механизм, состоящий из коромысла 1, храпового колеса 3 н собачек 3 и 4.

При качаниях коромысла 1 качающаяся собачка 3 сообщает вращение храповому колесу 2 только при движении коромысла против часовой стрелки. Для удержания колеса 2 от самопроизвольного поворота па часовой стрелке при движении коромысла против хода часов служит стопорная собачка 4 .

Мальтийские и храповые механизмы широко применяются в станках и приборах,

Если необходимо передать на относительно большое расстояние механическую энергию из одной точки пространства а другую, то применяют механизмы с гибкими звеньями.

В качестве гибких звеньев, передающих движение от одного эвена механизма к другому, используются ремни, канаты, цепи, нити, ленты, шарики и т.п.,

На рис. 2.14 приведена структурная схема простейшего механизма с гибким звеном.

Передачи с гибкими звеньями широко применяются в машиностроении, приборостроении и в других отраслях промышленности.

Выше были рассмотрены наиболее типичные простейшие механизмы. механизмов приводятся и специальной Литературе, па-свидетельствах и справочниках, например таких, как .

Структурные формулы механизмов.

Существуют общие закономерности в структуре (строении) самых различных механизмов, связывающие число степеней свободы W механизма с числом звеньев и числом и видом его кинематических пар. Эти закономерности носят название структурных формул механизмов.

Для пространственных механизмов в настоящее время наиболее распространена формула Малышева, вывод которой производится следующим образом.

Пусть в механизме, имеющем m звеньев (включая, стойку), - число одно-, двух-, трех-, четырех- и пятиподвижных пар. Число подвижных звеньев обозначим. Если бы все подвижные звенья были свободными телами, общее число степеней свободы было бы равно 6 n . Однако каждая одноподвижная пара V класса накладывает на относительное движение звеньев, образующих пару, 5 связей, каждая двухподвижная пара IV класса - 4 связи и т. д. Следовательно, общее число степеней свободы, равное шести, будет уменьшено на величину

где - подвижность кинематической пары, - число пар, подвижность которых равна i . В общее число наложенных связей может войти некоторое число q избыточных (повторных) связей, которые дублируют другие связи, не уменьшая подвижности механизма, а только обращая его в статически неопределимую систему . Поэтому число степеней свободы пространственного механизма, равное числу степеней свободы его подвижной кинематической цепи относительно стойки, определяется по следующей формуле Малышева:

или в краткой записи

(2.2)

при механизм – статически определимая система, при - статически неопределимая система.

В общем случае решение уравнения (2.2) - трудная задача, поскольку неизвестны W и q ; имеющиеся способы решений сложны и не рассматриваются в данной лекции. Однако в частном случае, если W , равное числу обобщенных координат механизма, найдено из геометрических соображений, из этой формулы можно найти число избыточных связей (см. Решетов Л. Н. Конструирование рациональных механизмов. М ., 1972)

(2.3)

и решить вопрос о статической определимости механизма; или же, зная, что механизм статически определимый, найти (или проверить) W .

Важно заметить, что в структурные формулы не входят размеры звеньев, поэтому при структурном анализе механизмов можно предполагать их любыми (в некоторых пределах). Если избыточных связей нет (), сборка механизма происходит без деформирования звеньев, последние как бы самоустанавливаются; поэтому такие механизмы называют самоустанавливающимися . Если избыточные связи есть (), то сборка механизма и движение его звеньев становятся возможными только при деформировании последних.

Для плоских механизмов без избыточных связей структурная формула носит имя П. Л. Чебышева, впервые предложившего её в 1869 году для рычажных механизмов с вращательными парами и одной степенью свободы. В настоящее время формула Чебышева распространяется на любые плоские механизмы и выводится с учетом избыточных связей следующим образом

Пусть в плоском механизме, имеющем т звеньев (включая стойку), -число подвижных звеньев, - число низших пар и - число высших пар. Если бы все подвижные звенья были свободными телами, совершающими плоское движение, общее число степеней свободы было бы равно З n . Однако каждая низшая пара накладывает на относительное движение звеньев, образующих пару, две связи, оставляя одну степень свободы, а каждая высшая пара накладывает одну связь, оставляя 2 степени свободы.

В число наложенных связей может войти некоторое число избыточных (повторных) связей, устранение которых не увеличивает подвижности механизма. Следовательно, число степеней свободы плоского механизма, т. е. число степеней свободы его подвижной кинематической цепи относительно стойки, определяется по следующей формуле Чебышева:

(2.4)

Если известно, отсюда можно найти число избыточных связей

(2.5)

Индекс «п» напоминает о том, что речь идет об идеально плоском механизме, или точнее о его плоской схеме, поскольку за счет неточностей изготовления плоский механизм в какой-то мере является пространственным.

По формулам (2.2)-(2.5) проводят структурный анализ имеющихся механизмов и синтез структурных схем новых механизмов.

Структурный анализ и синтез механизмов.

Влияние избыточных связей на работоспособность и надежность машин.

Как было сказано выше, при произвольных (в некоторых пределах) размерах звеньев механизм с избыточными связями () нельзя собрать без деформирования звеньев. Поэтому такие механизмы требуют повышенной точности изготовления, в противном случае в процессе сборки звенья механизма деформируются, что вызывает нагружение кинематических пар и звеньев значительными дополнительными силами (сверх тех основных внешних сил, для передачи которых механизм предназначен). При недостаточной точности изготовления механизма с избыточными связями трение в кинематических парах может сильно увеличиться и привести к заклиниванию звеньев, поэтому с этой точки зрения избыточные связи в механизмах нежелательны.

Что касается избыточных связей в кинематических цепях механизма, то при конструировании машин их следует стремиться устранять или же оставлять минимальное количество, если полное их устранение оказывается невыгодным из-за усложнения конструкции или по каким-либо другим соображениям. В общем случае оптимальное решение следует искать, учитывая наличие необходимого технологического оборудования, стоимость изготовления, требуемые ресурс работы и надежность машины. Следовательно, это весьма сложная задача для каждого конкретного случая.

Методику определения и устранения избыточных связей в кинематических цепях механизмов рассмотрим на примерах.

Пусть плоский четырехзвенный механизм с четырьмя одноподвижными вращательными парами (рис. 2.15, а ) за счет неточностей изготовления (например, вследствие непараллельности осей A и D ) оказался пространственным. Сборка кинематических цепей 4 , 3 , 2 и отдельно 4 , 1 не вызывается трудностей, а точки B , B ’ можно расположить на оси х . Однако собрать вращательную пару В , образованную звеньями 1 и 2 , можно будет, лишь совместив системы координат Bxyz и B ’ x ’ y ’ z ’ , для чего потребуется линейное перемещение (деформация) точки B ’ звена 2 вдоль оси х и угловые деформации звена 2 вокруг осей х и z (показаны стрелками). Это означает наличие в механизме трёх избыточных связей, что подтверждается и по формуле (2.3): . Что бы данный пространственный механизм был статически определимый, нужна его другая структурная схема, например изображённая на рис. 2.15, б , где Сборка такого механизма произойдёт без натягов, поскольку совмещение точек В и В’ будет возможно за счёт перемещения точки С в цилиндрической паре.

Возможен вариант механизма (рис. 2.15, в ) с двумя сферическими парами (); в этом случае, помимо основной подвижности механизма появляется местная подвижность - возможность вращения шатуна 2 вокруг своей оси ВС ; эта подвижность не влияет на основной закон движения механизма и может быть даже полезна с точки зрения выравнивания износа шарниров: шатун 2 может при работе механизма поворачиваться вокруг своей оси за счёт динамических нагрузок. Формула Малышева подтверждает, что такой механизм будет статически определимым:

Рис. 2.15

Наиболее простой и эффективный способ устранения избыточных связей в механизмах приборов - применение высшей пары с точечным контактом взамен звена с двумя низшими парами; степень подвижности плоского механизма в этом случае не меняется, поскольку, по формуле Чебышева (при):

На рис. 2.16, а,б,в дан пример устранения избыточных связей в кулачковом механизме с поступательно движущимся роликовым толкателем. Механизм (рис. 2.16, а ) - четырехзвенный (); кроме основной подвижности (вращение кулачка 1 ) имеется местная подвижность (независимое вращение круглого цилиндрического ролика 3 вокруг своей оси); следовательно, . Плоская схема избыточных связей не имеет (механизм собирается без натягов,). Если вследствие неточностей изготов-ления механизм считать пространственным, то при линейном контакте ролика 3 с кулачком 1 по формуле Малышева при получим, но при определенном условии. Кинематическая пара цилиндр - цилиндр (рис. 2.16, 6 ) при невозможности относительного поворота звеньев 1 , 3 вокруг оси z была бы трехподвижной парой. Если же такой поворот вследствие неточности изготовления имеет место, но мал, и практически сохраняется линейный контакт (при нагружении пятно контакта по форме близко к прямоугольнику), то данная

кинематическая пара будет четырехподвижной, следовательно, и

Рис.2.17

Снижая класс высшей пары путем применения бочкообразного ролика (пятиподвижная пара с точечным контактом, рис. 2.16, в ), получим при и - механизм статически определимый. Однако при этом следует помнить, что линейный контакт звеньев, хотя и требует при повышенной точности изготовления, позволяет передать большие нагрузки, чем точечный контакт.

На рис.2.16, г, д дан другой пример устранения избыточных связей в зубчатой четырехзвенной передаче (, контакт зубьев колес 1 , 2 и 2, 3 - линейный). В этом случае, по формуле Чебышева, - плоская схема избыточных связей не имеет; по формуле Малышева, - механизм статически неопределимый, следовательно, потребуется высокая точность изготовления, в частности для обеспечения параллельности геометрических осей всех трех колес.

Заменяя зубья промежуточного колеса 2 на бочкообразные (рис. 2.16, д ), получим статически определимый механизм.

вращательные;

поступательные;

винтовые;

сферические.


Условные обозначения звеньев и кинематических пар на кинематических схемах.

Кинематической схемой механизма называется графическое изображение в выбранном масштабе взаимного расположения звеньев, входящих в кинематические пары, с применением условных обозначений по ГОСТ 2770-68. Большими буквами латинского алфавита на схемах обозначаются центры шарниров и другие характерные точки. Направления движения входных звеньев отмечаются стрелками. Кинематическая схема должна иметь все параметры необходимые для кинематического исследования механизма: размеры звеньев, числа зубьев зубчатых колес, профили элементов высших кинематических пар. Масштаб схемы характеризуют масштабным коэффициентом длины Kl , который равен отношению длины AB l звена в метрах к длине отрезка АВ, изображающего это звено на схеме, в миллиметрах: Kl = l AB / AB

Кинематическая схема, по существу, есть модель, которой заменяют реальный механизм для решения задач его структурного и кинематического анализа. Отметим основные допущения, которые при этой схематизации подразумеваются:

а) звенья механизма абсолютно жесткие;

б) зазоры в кинематических парах отсутствуют


Кинематические цепи и их классификация.

Кинематические цепи по характеру относительного движения звеньев разделяются на плоские и пространственные. Кинематическая цепь называется плоской, если точки её звеньев описывают траектории, лежащие в параллельных плоскостях. Кинематическая цепь называется пространственной, если точки её звеньев описывают неплоские траектории или траектории, лежащие в пересекающихся плоскостях.

Классификация кинематических цепей:

Плоские – при закреплении одного звена, остальные звенья совершают плоское движение, параллельно некоторой неподвижной плоскости.

Пространственные – при закрепление одного звена, остальные звенья совершают движение в различных плоскостях.

Простые – в каждое звено входит не более, чем две кинематические пары.

Сложные – хотя бы одно звено имеет более двух кинематических пар.

Замкнутые – входит не более чем две кинематические пары, и эти звенья образуют один или несколько замкнутых контуров

Разомкнутые – звенья не образуют замкнутый контур.


Число степеней свободы кинематической цепи, подвижность механизма.

Число входных звеньев для превращения кинематической цепи в механизм должно равняться числу степеней свободы этой кинематической цепи.

Под числом степеней свободы кинематической цепи в данном случае подразумевается число степеней свободы подвижных звеньев относительно стойки (звена, принятого за неподвижное). Однако сама стойка в реальном пространстве может перемещаться.

Введем следующие обозначения:

k – число звеньев кинематической цепи

p1 – число кинематических пар первого класса в данной цепи

p2 – число пар второго класса

p3 – число пар третьего класса

p4 – число пар четвертого класса

p5 – число пар пятого класса.

Общее число степеней свободы k свободных звеньев, размещенных в пространстве, равно 6k. В кинематической цепи они соединяются в кинематические пары (т.е. на их относительное движение накладываются связи).

Кроме того, в качестве механизма используется кинематическая цепь, имеющая стойку (звено, принятое за неподвижное). Поэтому число степеней свободы кинематической цепи будет равно общему числу степеней свободы всех звеньев за вычетом связей, накладываемых на их относительное движение:

Число связей, накладываемых всеми парами I класса, равно их числу, т.к. каждая пара первого класса накладывает одну связь на относительное движение звеньев, соединенных в такую пару; число связей, накладываемых всеми парами II класса, равно их удвоенному количеству (каждая пара второго класса накладывает две связи) и т.д

У звена, принятого за неподвижное, отнимаются все шесть степеней свободы (на стойку накладывается шесть связей). Таким образом:

S1=p1, S2=2p2, S3=3p3, S4=4p4, S5=5p5, Sстойки=6,

а сумма всех связей

∑Si=p1+2p2+3p3+4p4+5p5+6.

В результате получается следующая формула для определения числа степеней свободы пространственной кинематической цепи:

W=6k–p1–2p2–3p3–4p4–5p5–6.

Сгруппировав первый и последний члены уравнения, получаем:

W=6(k–1)–p1–2p2–3p3–4p4–5p5,

или окончательно:

W=6n–p1–2p2–3p3–4p4–5p5,

Таким образом, число степеней свободы разомкнутой кинематической цепи равно сумме подвижностей (степеней свободы) кинематических пар, входящих в эту цепь. Кроме степеней свободы на качество работы манипуляторов и промышленных роботов большое влияние оказывает их маневренность.


Виды зубчатых механизмов, их строение и краткая характеристика.

Зубчатой передачей называется трехзвенный механизм, в котором два подвижных звена являются зубчатыми колесами, или колесо и рейка с зубьями, образующими с неподвижным звеном (корпусом) вращательную или поступательную пару.

Зубчатая передача состоит из двух колес, посредством которых они сцепляются между собой. Зубчатое колесо с меньшим числом зубьев называют шестерней, с большим числом зубьев колесом.

Термин «зубчатое колесо» является общим. Параметрам шестерни приписывают индекс 1, а параметрам колеса 2.

Основными преимуществами зубчатых передач являются:

Постоянство передаточного числа (отсутствие проскальзывания);

Компактность по сравнению с фрикционными и ременными передачами;

Высокий КПД (до 0,97…0,98 в одной ступени);

Большая долговечность и надежность в работе (например, для редукторов общего применения установлен ресурс 30000 ч);

Возможность применения в широком диапазоне скоростей (до 150 м/с), мощностей (до десятков тысяч кВт).

Недостатки:

Шум при высоких скоростях;

Невозможность бесступенчатого изменения передаточного числа;

Необходимость высокой точности изготовления и монтажа;

Незащищенность от перегрузок;

Наличие вибраций, которые возникают в результате неточного изготовления и неточной сборки передач.

Зубчатые передачи эвольвентного профиля широко распространены во всех отраслях машиностроения и приборостроения. Они применяются в исключительно широком диапазоне условий работы. Мощности, передаваемые зубчатыми передачами, изменяются от ничтожно малых (приборы, часовые механизмы) до многих тысяч кВт (редукторы авиационных двигателей). Наибольшее распространение имеют передачи с цилиндрическими колесами, как наиболее простые в изготовлении и эксплуатации, надежные и малогабаритные. Конические, винтовые и червячные передачи применяют лишь в тех случаях, когда это необходимо по условиям компоновки машины.


Основной закон зацепления.

Для обеспечения постоянства передаточного

отношения: необходимо, чтобы профили сопряженных зубьев были очерчены такими кривыми, которые удовлетворяли бы требованиям основной теоремы зацепления

Основной закон зацепления: общая нормаль N-N к профилям, проведенная в точке C их касания, делит межосевое расстояние а w на части, обратно пропорциональные угловым скоростям. При постоянном передаточном отношении ( = const) и зафиксированных центрах О 1 и О 2 точка W будет занимать на линии центров неизменное положение. При этом проекции скорости  k 1 и  k 2 не равны. Их разность указывает на относительное скольжение профилей в направлении касательной К-К, что вызывает их износ. Равенство проекций скоростей и возможно только в одном положении, когда точка С контакта профилей совпадет с точкой W пересечения нормали N-N и линии центров О 1 О 2 . Точка W называется полюсом зацепления, а окружности с диаметрами d w1 и d w2 , которые касаются в полюсе зацепления и перекатываются друг по другу без скольжения, называются начальными.

Для обеспечения постоянства передаточного отношения теоретически один из профилей может быть выбран произвольно, но форма профиля сопряженного зуба должна быть строго определенной для выполнения условия (1.82). Наиболее технологичными в изготовлении и эксплуатации являются эвольвентные профили. Существуют и другие виды зацепления: циклоидальное, цевочное, зацепление Новикова, удовлетворяющие данному требованию.


Виды кинематических пар и их краткая характеристика.

Кинематическая пара, называется соединение двух соприкасающихся звеньев, допускающее их относительное движение.

Совокупность поверхностей, линий, точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом звена (элементом кинематической пары).

Кинематические пары (КП) классифицируются по следующим признакам:

по виду места контакта (места связи) поверхностей звеньев:

низшие, в которых контакт звеньев осуществляется по плоскости или поверхности (пары скольжения);

высшие, в которых контакт звеньев осуществляется по линиям или точкам (пары, допускающие скольжение с перекатыванием).

по относительному движению звеньев, образующих пару:

вращательные;

поступательные;

винтовые;

сферические.

по способу замыкания (обеспечения контакта звеньев пары):

силовое (за счет действия сил веса или силы упругости пружины);

геометрическое (за счет конструкции рабочих поверхностей пары).

Кинематическая пара, как указывалось выше, это соединение двух соприкасающихся звеньев, допускающее их относительное движение. Модели этих движений изображены на рис. 1.16. Звенья при их объединении в кинематическую пару могут соприкасаться между собой по поверхностям, линиям и точкам. Элементами кинематической пары называют совокупность поверхностей, линий или точек, по которым происходит подвижное соединение двух звеньев, и которые образуют кинематическую пару. Точнее, элементами кинематической пары называют общие для соединенных звеньев поверхности, линии или точки, которыми звенья соприкасаются между собой, образуя кинематическую пару. Таким образом, кинематическая пара не может быть образована телами, которые не находятся в соприкосновении. Степень ограничения свободы движения одного звена кинематической пары относительно другого может зависеть только от геометрических форм мест соприкосновения, то есть от элементов кинематической пары. Ни материалы, из которых выполнены звенья, ни форма тех их частей, которые не соприкасаются между собой, не могут налагать ограничений на относительную подвижность звеньев, и потому в теории механизмов и машин они не рассматриваются.

Рис. 1.16. Модели кинематических пар, слева направо: верхний ряд - шар на плоскости, цилиндр на плоскости, шар в цилиндре, плоскостная пара, сферическая пара и нижний ряд - сферическая с пальцем, цилиндрическая, поступательная, винтовая

Кинематические пары классифицируются по нескольким признакам. Чтобы пара могла существовать, элементы входящих в нее звеньев должны быть замкнутыми, то есть быть в постоянном контакте.

Классификация кинематических пар

Таблица 1.2

Вид пары и степень свободы

Полуконструк-

изображение

Подвижность пары w, число связей

Условное

обозначение

вращательная

» € и и ^ „

винтовая [ШЖ00]

цилиндрическая

сферическая

плоскостная

линейная ;

w = 4 5=2

точечная

По геометрическому виду связи поверхностей и способу замыкания

кинематические пары делятся на низшие и высшие, с силовым или геометрическим замыканием. Замыканием пары называется обеспечение постоянного соприкосновения соответственных элементов пары. У низших контакт звеньев, связь поверхностей осуществляется по одной или нескольким поверхностям. Это пары скольжения (их относительное движение всегда является скольжением), и для таких пар характерно геометрическое замыкание за счет конструктивной формы элементов пары. У высших кинематических пар звенья соприкасаются по линии или в точке. Поэтому возможно не только относительное скольжение, но и качение, верчение. Для таких пар чаще характерно силовое замыкание, то есть элементы прижимаются друг к другу силами веса, упругими силами и т.д. На рис. 1.16 к высшим парам относятся шар на плоскости (соприкасаются в точке), цилиндр на плоскости (соприкасаются по отрезку прямой) и шар в цилиндре (соприкасаются по окружности). Все остальные пары - низшие.

По относительному движению звеньев пары делятся на вращательные (В) (англ, a revolute joint (R)), поступательные (П) (англ, a prismatic joint (Р)), винтовые (Ви) (англ, a helical joint (Н) or screw pair), плоские или плоскостные (Пл) (англ, planar joint (Е)), цилиндрические (Ц) (англ, a cylindrical joint (С)), сферические (С) (англ, a spherical or ball joint (S)), линейные (Л) и точечные (Т).

По числу подвижностей w (числу степеней свободы) в относительном движении звеньев пары они делятся на одно-, двух-, трех-, четырех- и пятиподвижные.

По числу связей s, наложенных на относительное движение звеньев, кинематические пары делятся на классы: 1-, 2-, 3-, 4-, 5-связные пары образуют соответственно пары 1, 11, III, IV и V классов. Высшие кинематические пары могут быть всех классов и многих видов, а низшие - только III, IV и V классов и 6 видов. В таблице 1.2 показаны разные виды кинематических пар, их по- луконструктивные и схематические изображения, а также подвижность пары w и число связей s.

Подвижность пары w определяется по формуле

где П - подвижность пространства, в котором конструктивно реализуется пара, s - число налагаемых парой связей.

Напомним, что в трехмерном пространстве абсолютно твердое тело (а значит и звенья, которые им моделируются) обладает шестью степенями свободы. Это три степени свободы поступательного движения, например, вдоль координатных осей. И три степени свободы вращательного движения, например, вращения вокруг тех же координатных осей.

Таблица 1.3

Кинематические соединения, эквивалентные кинематическим парам

Контакт звеньев

Виды пары

Подвижность

Виды кинематических пар

Изображение

Эквивалентное

кинематическое

соединение

По поверхности

Низшая кинематическая пара

Высшая кинематическая пара

w = 4 5 = 2

Таблица 1.4

Условные обозначения кинематических пар по ГОСТ 2.770-68

степеней

Название

Условное

обозначение

шар-плоскость

шар-цилиндр

сферическая

плоскостная

цилиндрическая

сферическая с пальцем

поступательная

вращательная

винтовая

В плоском движении абсолютно твердое тело обладает тремя степенями свободы - две степени поступательного движения и одна степень вращательного движения. Поэтому трехмерное пространство шестиподвижно, а двумерное - трехподвижно. Данные в таблице 1.2 следует рассматривать с учетом этого. Например, вращательная пара и поступательная , и в 6-подвижном, и в 3-подвижном пространстве будет одноподвижной, то есть w - 1. Нов первом случае на нее будет наложено 5 связей (s = 5), а во втором - 2 связи (s = 2).

Можно подобрать такую форму элементов пары, чтобы при одном независимом простейшем движении возникало второе - зависимое. Примером такой кинематической пары является винтовая . В этой паре вращательное движение винта (гайки) вызывает поступательное его (ее) перемещение вдоль оси. Такую пару следует отнести к одноподвижным (w = 1), так как в ней реализуется всего одно независимое простейшее движение.

В роли кинематической пары может выступить и кинематическое соединение - выполненная из нескольких подвижных деталей с поверхностным, линейным или точечным контактом элементов компактная конструкция, обеспечивающая возможность относительного движения соответственного вида, эквивалентного данной кинематической паре. То есть, кинематическим соединением называется кинематическая цепь, предназначенная для замены кинематической пары. Примером такого кинематического соединения служат подшипники. Кинематические соединения имеют чаще всего большое число избыточных локальных связей, но за счет конструктивного изготовления это не оказывает влияния на основные подвижности кинематических пар. Каждой паре в механизме могут соответствовать разные варианты кинематических соединений в виде нескольких деталей, имеющих местные подвижности, которые не влияют на конечную подвижность пары (роликовый подшипник эквивалентен двухподвижной цилиндрической паре, упорный шарикоподшипник со сферической наружной поверхностью, установленный на конусной поверхности, эквивалентен пятиподвижной точечной паре). В таблице 1.3 приведены кинематические пары и эквивалентные им кинематические соединения.

В конце этого пункта приведем условные обозначения кинематических пар по ГОСТ 2770-68 (табл. 1.4).

2024 english-speak.ru. Изучение английского языка.