Какое небесное тело имеет хвост. Кометы и их исследования с помощью космических аппаратов. Кометы и Земля

Комета - небольшое небесное тело,
имеющее туманный вид, обращающееся
вокруг Солнца обычно по вытянутым
орбитам. При приближении к Солнцу комета
образует кому и иногда хвост из газа и пыли.

Общие сведения
Предположительно, долгопериодические кометы
залетают к нам из Облака Оорта, в котором находится
огромное количество кометных ядер. Тела, находящиеся
на окраинах Солнечной системы, как правило, состоят
из летучих веществ (водяных, метановых и других
льдов), испаряющихся при подлёте к Солнцу.

На данный момент обнаружено более 400 короткопериодических комет. Многие из
них входят в так называемые семейства. Например, приблизительно 50 самых
короткопериодических комет (их полный оборот вокруг Солнца длится 3-10 лет)
образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и
Нептуна.

Кометы, прибывающие из глубины космоса, выглядят как туманные объекты, за
которыми тянется хвост, иногда достигающий в длину нескольких миллионов
километров. Ядро кометы представляет собой тело из твёрдых частиц и льда, окутанное
туманной оболочкой, которая называется комой. Ядро диаметром в несколько
километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки
солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в
длинный дымчатый хвост, который движется за ней в пространстве.

Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только
очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было
увидеть невооружённым глазом. Самые заметные из них иногда называют «большими
(великими) кометами».

Строение комет
Кометы состоят из ядра и окружающей его светлой туманной оболочки (комы),
состоящей из газов и пыли. У ярких комет с приближением к Солнцу образуется
«хвост» - слабая светящаяся полоса, которая в результате светового давления и
действия солнечного ветра чаще всего направлена в противоположную от нашего
светила сторону. Хвосты небесных странниц комет различаются длиной и формой. У
некоторых комет они тянутся через всё небо. Хвосты комет не имеют резких очертаний
и практически прозрачны - сквозь них хорошо видны звёзды. Состав его разнообразен:
газ или мельчайшие пылинки, или же смесь того и другого.
Хвосты комет бывают:
прямые и узкие,
направленные прямо от
Солнца;
широкие и немного
искривлённые,
уклоняющиеся от Солнца;
короткие, сильно
уклонённые от
центрального светила.

История открытия комет
Впервые И. Ньютон вычислил орбиту кометы из наблюдений ее перемещения на фоне
звезд и убедился, что она, подобно планетам, двигалась в солнечной системе под
действием тяготения Солнца. Галлей вычислил установил, что кометы, наблюдавшиеся
в 1531, 1607 и 1682 гг., - это одно и то же светило, периодически возвращающееся к
Солнцу. В афелии комета уходит за орбиту Нептуна и через 75,5 лет возвращается
вновь к Земле и Солнцу. Галлей впервые предсказал появление кометы в 1758 г. Через
много лет после его смерти она действительно появилась. Ей присвоили название
кометы Галлея и видели ее еще в 1835 и в 1910 и в 1986 годах.

Комета Галлея - яркая короткопериодическая комета, возвращающаяся к Солнцу
каждые 75-76 лет. Является первой кометой, для которой определили эллиптическую
орбиту и установили периодичность возвращений. Названа в честь Э. Галлея. Несмотря
на то, что каждый век появляется много более ярких долгопериодических комет, комета
Галлея - единственная короткопериодическая комета, хорошо видимая
невооружённым глазом. Во время появления 1986 года комета Галлея стала первой
кометой, исследованной с помощью космических аппаратов, в том числе советскими
аппаратами «Вега‑1» и «Вега‑2», которые предоставили данные о структуре кометного
ядра и механизмах образования комы и хвоста кометы.

Кометы и Земля
Массы комет ничтожны - примерно в миллиард раз меньше массы Земли, а
плотность вещества из их хвостов практически равна нулю. Поэтому «небесные
гостьи» никак не влияют на планеты Солнечной системы. В мае 1910 Земля, например,
проходила сквозь хвост кометы Галлея, но никаких изменений в движении нашей
планеты не произошло.
С другой стороны, столкновение крупной кометы с планетой может вызвать
крупномасштабные последствия в атмосфере и магнитосфере планеты. Хорошим и
довольно качественно исследованным примером такого столкновения было
столкновение обломков кометы Шумейкеров-Леви 9 с Юпитером в июле 1994 года.

Содержание статьи

КОМЕТА, небольшое небесное тело, движущееся в межпланетном пространстве и обильно выделяющее газ при сближении с Солнцем. С кометами связаны разнообразные физические процессы, от сублимации (сухое испарение) льда до плазменных явлений. Кометы – это остатки формирования Солнечной системы , переходная ступень к межзвездному веществу. Наблюдение комет и даже их открытие нередко осуществляются любителями астрономии. Иногда кометы бывают столь яркими, что привлекают всеобщее внимание. В прошлом появление ярких комет вызывало у людей страх и служило источником вдохновения для художников и карикатуристов.

Движение и пространственное распределение.

Все или почти все кометы являются составными частями Солнечной системы. Они, как и планеты, подчиняются законам тяготения, но движутся весьма своеобразно. Все планеты обращаются вокруг Солнца в одном направлении (которое называют «прямым» в отличие от «обратного») по почти круговым орбитам, лежащим примерно в одной плоскости (эклиптики), а кометы движутся как в прямом, так и обратном направлениях по сильно вытянутым (эксцентричным) орбитам, наклоненным под различными углами к эклиптике. Именно характер движения сразу выдает комету.

Долгопериодические кометы (с орбитальным периодом более 200 лет) прилетают из областей, расположенных в тысячи раз дальше, чем самые удаленные планеты, причем их орбиты бывают наклонены под всевозможными углами. Короткопериодические кометы (период менее 200 лет) приходят из района внешних планет, двигаясь в прямом направлении по орбитам, лежащим недалеко от эклиптики. Вдали от Солнца кометы обычно не имеют «хвостов», но иногда имеют еле видимую «кому», окружающую «ядро»; вместе их называют «головой» кометы. С приближением к Солнцу голова увеличивается и появляется хвост.

Структура.

В центре комы располагается ядро – твердое тело или конгломерат тел диаметром в несколько километров. Практически вся масса кометы сосредоточена в ее ядре; эта масса в миллиарды раз меньше земной. Согласно модели Ф.Уиппла, ядро кометы состоит из смеси различных льдов, в основном водяного льда с примесью замерзших углекислоты, аммиака и пыли. Эту модель подтверждают как астрономические наблюдения, так и прямые измерения с космических аппаратов вблизи ядер комет Галлея и Джакобини – Циннера в 1985–1986.

Когда комета приближается к Солнцу ее ядро нагревается, и льды сублимируются, т.е. испаряются без плавления. Образовавшийся газ разлетается во все стороны от ядра, унося с собой пылинки и создавая кому. Разрушающиеся под действием солнечного света молекулы воды образуют вокруг ядра кометы огромную водородную корону. Помимо солнечного притяжения на разреженное вещество кометы действуют и отталкивающие силы, благодаря которым образуется хвост. На нейтральные молекулы, атомы и пылинки действует давление солнечного света, а на ионизованные молекулы и атомы сильнее влияет давление солнечного ветра.

Поведение частиц, формирующих хвост, стало значительно понятнее после прямого исследования комет в 1985–1986. Плазменный хвост, состоящий из заряженных частиц, имеет сложную магнитную структуру с двумя областями различной полярности. На обращенной к Солнцу стороне комы формируется лобовая ударная волна, проявляющая высокую плазменную активность.

Хотя в хвосте и коме заключено менее одной миллионной доли массы кометы, 99,9% света исходит именно из этих газовых образований, и только 0,1% – от ядра. Дело в том, что ядро очень компактно и к тому же имеет низкий коэффициент отражения (альбедо).

Иногда кометы разрушаются при сближении с планетами. 24 марта 1993 на обсерватории Маунт-Паломар в Калифорнии астрономы К. и Ю.Шумейкеры совместно с Д.Леви открыли недалеко от Юпитера комету с уже разрушенным ядром. Вычисления показали, что 9 июля 1992 комета Шумейкеров – Леви-9 (это уже девятая открытая ими комета) прошла вблизи Юпитера на расстоянии половины радиуса планеты от ее поверхности и была разорвана его притяжением более чем на 20 частей. До разрушения радиус ее ядра составлял ок. 20 км.

Растянувшись в цепочку, осколки кометы удалились от Юпитера по вытянутой орбите, а затем в июле 1994 вновь приблизились к нему и столкнулись с облачной поверхностью Юпитера.

Происхождение.

Ядра комет – это остатки первичного вещества Солнечной системы, составлявшего протопланетный диск. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю. В принципе некоторые кометы могли бы приходить к нам из межзвездного пространства, но пока ни одна такая комета надежно не выявлена.

Газовый состав.

В табл. 1 перечислены основные газовые составляющие комет в порядке убывания их содержания. Движение газа в хвостах комет показывает, что на него сильно влияют негравитационные силы. Свечение газа возбуждается солнечным излучением.

ОРБИТЫ И КЛАССИФИКАЦИЯ

Чтобы лучше понять этот раздел, советуем познакомиться со статьями:НЕБЕСНАЯ МЕХАНИКА; КОНИЧЕСКИЕ СЕЧЕНИЯ; ОРБИТА; СОЛНЕЧНАЯ СИСТЕМА.

Орбита и скорость.

Движение ядра кометы полностью определяется притяжением Солнца. Форма орбиты кометы, как и любого другого тела в Солнечной системе, зависит от ее скорости и расстояния до Солнца. Средняя скорость тела обратно пропорциональна квадратному корню из его среднего расстояния до Солнца (a ). Если скорость всегда перпендикулярна радиусу-вектору, направленному от Солнца к телу, то орбита круговая, а скорость называют круговой скоростью (v c ) на расстоянии a . Скорость ухода из гравитационного поля Солнца по параболической орбите (v p ) в раз больше круговой скорости на этом расстоянии. Если скорость кометы меньше v p , то она движется вокруг Солнца по эллиптической орбите и никогда не покидает Солнечной системы. Но если скорость превосходит v p , то комета один раз проходит мимо Солнца и навсегда покидает его, двигаясь по гиперболической орбите.

На рисунке показаны эллиптические орбиты двух комет, а также почти круговые орбиты планет и параболическая орбита. На расстоянии, которое отделяет Землю от Солнца, круговая скорость равна 29,8 км/с, а параболическая – 42,2 км/с. Вблизи Земли скорость кометы Энке равна 37,1 км/с, а скорость кометы Галлея – 41,6 км/с; именно поэтому комета Галлея уходит значительно дальше от Солнца, чем комета Энке.

Классификация кометных орбит.

Орбиты у большинства комет эллиптические, поэтому они принадлежат Солнечной системе. Правда, у многих комет это очень вытянутые эллипсы, близкие к параболе; по ним кометы уходят от Солнца очень далеко и надолго. Принято делить эллиптические орбиты комет на два основных типа: короткопериодические и долгопериодические (почти параболические). Пограничным считается орбитальный период в 200 лет.

РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ И ПРОИСХОЖДЕНИЕ

Почти параболические кометы.

К этому классу относятся многие кометы. Поскольку их периоды обращения составляют миллионы лет, в течение века в окрестности Солнца появляется лишь одна десятитысячная их часть. В 20 в. наблюдалось ок. 250 таких комет; следовательно, всего их миллионы. К тому же далеко не все кометы приближаются к Солнцу настолько, чтобы стать видимыми: если перигелий (ближайшая к Солнцу точка) орбиты кометы лежит за орбитой Юпитера, то заметить ее практически невозможно.

Учитывая это, в 1950 Ян Оорт предположил, что пространство вокруг Солнца на расстоянии 20–100 тыс. а.е. (астрономических единиц: 1 а.е. = 150 млн. км, расстояние от Земли до Солнца) заполнено ядрами комет, численность которых оценивается в 10 12 , а полная масса – в 1–100 масс Земли. Внешняя граница «кометного облака» Оорта определяется тем, что на этом расстоянии от Солнца на движение комет существенно влияет притяжение соседних звезд и других массивных объектов (см . ниже ). Звезды перемещаются относительно Солнца, их возмущающее влияние на кометы изменяется, и это приводит к эволюции кометных орбит. Так, случайно комета может оказаться на орбите, проходящей вблизи Солнца, но на следующем обороте ее орбита немного изменится, и комета пройдет вдали от Солнца. Однако вместо нее из облака Оорта в окрестность Солнца будут постоянно попадать «новые» кометы.

Короткопериодические кометы.

При прохождении кометы вблизи Солнца ее ядро нагревается, и льды испаряются, образуя газовые кому и хвост. После нескольких сотен или тысяч таких пролетов в ядре не остается легкоплавких веществ, и оно перестает быть видимым. Для регулярно сближающихся с Солнцем короткопериодических комет это означает, что менее чем за миллион лет их популяция должна стать невидимой. Но мы их наблюдаем, следовательно, постоянно поступает пополнение из «свежих» комет.

Пополнение короткопериодических комет происходит в результате их «захвата» планетами, главным образом Юпитером. Ранее считалось, что захватываются кометы из числа долгопериодических, приходящих из облака Оорта, но теперь полагают, что их источником служит кометный диск, называемый «внутренним облаком Оорта». В принципе представление об облаке Оорта не изменилось, однако расчеты показали, что приливное влияние Галактики и воздействие массивных облаков межзвездного газа должны довольно быстро его разрушать. Необходим источник его пополнения. Таким источником теперь считают внутреннее облако Оорта, значительно более устойчивое к приливному влиянию и содержащее на порядок больше комет, чем предсказанное Оортом внешнее облако. После каждого сближения Солнечной системы с массивным межзвездным облаком кометы из внешнего облака Оорта разлетаются в межзвездное пространство, а им на смену приходят кометы из внутреннего облака.

Переход кометы с почти параболической орбиты на короткопериодическую происходит в том случае, если она догоняет планету сзади. Обычно для захвата кометы на новую орбиту требуется несколько ее проходов через планетную систему. Результирующая орбита кометы, как правило, имеет небольшое наклонение и большой эксцентриситет. Комета движется по ней в прямом направлении, и афелий ее орбиты (наиболее удаленная от Солнца точка) лежит вблизи орбиты захватившей ее планеты. Эти теоретические соображения полностью подтверждаются статистикой кометных орбит.

Негравитационные силы.

Газообразные продукты сублимации оказывают реактивное давление на ядро кометы (подобное отдаче ружья при выстреле), которое приводит к эволюции орбиты. Наиболее активный отток газа происходит с нагретой «послеполуденной» стороны ядра. Поэтому направление силы давления на ядро не совпадает с направлением солнечных лучей и солнечного тяготения. Если осевое вращение ядра и его орбитальное обращение происходят в одном направлении, то давление газа в целом ускоряет движение ядра, приводя к увеличению орбиты. Если же вращение и обращение происходят в противоположных направлениях, то движение кометы тормозится, и орбита сокращается. Если такая комета первоначально была захвачена Юпитером, то через некоторое время ее орбита целиком оказывается в области внутренних планет. Вероятно, именно это случилось с кометой Энке.

Кометы, задевающие Солнце.

Особую группу короткопериодических комет составляют кометы, «задевающие» Солнце. Вероятно, они образовались тысячелетия назад в результате приливного разрушения крупного, не менее 100 км в диаметре, ядра. После первого катастрофического сближения с Солнцем фрагменты ядра совершили ок. 150 оборотов, продолжая распадаться на части. Двенадцать членов этого семейства комет Крейца наблюдались между 1843 и 1984. Возможно, их происхождение связано с большой кометой, которую видел Аристотель в 371 до н.э.

Комета Галлея.

Это самая знаменитая из всех комет. Она наблюдалась 30 раз с 239 до н.э. Названа в честь Э.Галлея, который после появления кометы в 1682 рассчитал ее орбиту и предсказал ее возвращение в 1758. Орбитальный период кометы Галлея – 76 лет; последний раз она появилась в 1986 и в следующий раз будет наблюдаться в 2061. В 1986 ее изучали с близкого расстояния 5 межпланетных зондов – два японских («Сакигаке» и «Суйсей»), два советских («Вега-1» и «Вега-2») и один европейский («Джотто»). Оказалось, что ядро кометы имеет картофелеобразную форму длиной ок. 15 км и шириной ок. 8 км, а его поверхность «чернее угля».Возможно, оно покрыто слоем органических соединений, например полимеризованного формальдегида. Количество пыли вблизи ядра оказалось значительно выше ожидаемого.

Комета Энке.

Эта тусклая комета была первой включена в семейство комет Юпитера. Ее период 3,29 года – наиболее короткий среди комет. Орбиту впервые вычислил в 1819 немецкий астроном И.Энке (1791–1865), отождествивший ее с кометами, наблюдавшимися в 1786, 1795 и 1805. Комета Энке ответственна за метеорный поток Тауриды, наблюдающийся ежегодно в октябре и ноябре.

Комета Джакобини – Циннера.

Эту комету открыл М.Джакобини в 1900 и переоткрыл Э.Циннер в 1913. Ее период 6,59 лет. Именно с ней 11 сентября 1985 впервые сблизился космический зонд «International Cometary Explorer», который прошел через хвост кометы на расстоянии 7800 км от ядра, благодаря чему были получены данные о плазменной компоненте хвоста. С этой кометой связан метеорный поток Джакобиниды (Дракониды).

ФИЗИКА КОМЕТ

Ядро.

Все проявления кометы так или иначе связаны с ядром. Уиппл предположил, что ядро кометы является сплошным телом, состоящим в основном из водяного льда с частицами пыли. Такая модель «грязного снежка» легко объясняет многократные пролеты комет вблизи Солнца: при каждом пролете испаряется тонкий поверхностный слой (0,1–1% полной массы) и сохраняется внутренняя часть ядра. Возможно, ядро является конгломератом нескольких «кометезималей», каждая не более километра в диаметре. Такая структура могла бы объяснить распад ядер на части, как это наблюдалось у кометы Биелы в1845 или у кометы Веста в 1976.

Блеск.

Наблюдаемый блеск освещенного Солнцем небесного тела с неизменной поверхностью меняется обратно пропорционально квадратам его расстояний от наблюдателя и от Солнца. Однако солнечный свет рассеивается в основном газопылевой оболочкой кометы, эффективная площадь которой зависит от скорости сублимации льда, а та, в свою очередь, – от теплового потока, падающего на ядро, который сам изменяется обратно пропорционально квадрату расстояния до Солнца. Поэтому блеск кометы должен меняться обратно пропорционально четвертой степени расстояния до Солнца, что и подтверждают наблюдения.

Размер ядра.

Размер ядра кометы можно оценить из наблюдений в то время, когда оно далеко от Солнца и не окутано газопылевой оболочкой. В этом случае свет отражается только твердой поверхностью ядра, и его видимый блеск зависит от площади сечения и коэффициента отражения (альбедо). У ядра кометы Галлея альбедо оказалось очень низким – ок. 3%. Если это характерно и для других ядер, то диаметры большинства из них лежат в диапазоне от 0,5 до 25 км.

Сублимация.

Переход вещества из твердого состояния в газообразное важен для физики комет. Измерения яркости и спектров излучения комет показали, что плавление основных льдов начинается на расстоянии 2,5–3,0 а.е., как должно быть, если лед в основном водяной. Это подтвердилось при изучении комет Галлея и Джакобини – Циннера. Газы, наблюдающиеся первыми при сближении кометы с Солнцем (CN, C 2), вероятно, растворены в водяном льде и образуют газовые гидраты (клатраты). Каким образом этот «составной» лед будет сублимироваться, в значительной степени зависит от термодинамических свойств водяного льда. Сублимация пыле-ледяной смеси происходит в несколько этапов. Потоки газа и подхваченные ими мелкие и пушистые пылинки покидают ядро, поскольку притяжение у его поверхности крайне слабое. Но плотные или скрепленные между собой тяжелые пылинки газовый поток не уносит, и формируется пылевая кора. Затем солнечные лучи нагревают пылевой слой, тепло проходит внутрь, лед сублимируется, и газовые потоки прорываются, ломая пылевую кору. Эти эффекты проявились при наблюдении кометы Галлея в 1986: сублимация и отток газа происходили лишь в нескольких областях ядра кометы, освещенных Солнцем. Вероятно, в этих областях обнажился лед, тогда как остальная поверхность была закрыта корой. Вырвавшиеся на свободу газ и пыль формируют наблюдаемые структуры вокруг ядра кометы.

Кома.

Пылинки и газ из нейтральных молекул (табл. 1) образуют почти сферическую кому кометы. Обычно кома тянется от 100 тыс. до 1 млн. км от ядра. Давление света может деформировать кому, вытянув ее в антисолнечном направлении.

Водородная корона.

Поскольку льды ядра в основном водяные, то и кома в основном содержит молекулы H 2 O. Фотодиссоциация разрушает H 2 O на H и OH, а затем OH – на O и H. Быстрые атомы водорода улетают далеко от ядра прежде чем оказываются ионизованными, и образуют корону, видимый размер которой часто превосходит солнечный диск.

Хвост и сопутствующие явления.

Хвост кометы может состоять из молекулярной плазмы или пыли. Некоторые кометы имеют хвосты обоих типов.

Пылевой хвост обычно однородный и тянется на миллионы и десятки миллионов километров. Он образован пылинками, отброшенными давлением солнечного света от ядра в антисолнечном направлении, и имеет желтоватый цвет, поскольку пылинки просто рассеивают солнечный свет. Структуры пылевого хвоста могут объясняться неравномерным извержением пыли из ядра или разрушением пылинок.

Плазменный хвост в десятки и даже сотни миллионов километров длиной – это видимое проявление сложного взаимодействия между кометой и солнечным ветром. Некоторые покинувшие ядро молекулы ионизуются солнечным излучением, образуя молекулярные ионы (H 2 O + , OH + , CO + , CO 2 +) и электроны. Эта плазма препятствует движению солнечного ветра, пронизанного магнитным полем. Наталкиваясь на комету, силовые линии поля оборачиваются вокруг нее, принимая форму шпильки для волос и образуя две области противоположной полярности. Молекулярные ионы захватываются в эту магнитную структуру и образуют в центральной, наиболее плотной ее части видимый плазменный хвост, имеющий голубой цвет из-за спектральных полос CO + . Роль солнечного ветра в формировании плазменных хвостов установили Л.Бирман и Х.Альвен в 1950-х годах. Их расчеты подтвердили измерения с космических аппаратов, пролетевших через хвосты комет Джакобини – Циннера и Галлея в 1985 и 1986.

В плазменном хвосте происходят и другие явления взаимодействия с солнечным ветром, налетающим на комету со скоростью ок. 400 км/с и образующим перед ней ударную волну, в которой уплотняется вещество ветра и головы кометы. Существенную роль играет процесс «захвата»; суть его в том, что нейтральные молекулы кометы свободно проникают в поток солнечного ветра, но сразу после ионизации начинают активно взаимодействовать с магнитным полем и ускоряются до значительных энергий. Правда, иногда наблюдаются весьма энергичные молекулярные ионы, необъяснимые с точки зрения указанного механизма. Процесс захвата возбуждает также плазменные волны в гигантском объеме пространства вокруг ядра. Наблюдение этих явлений имеет фундаментальный интерес для физики плазмы.

Замечательное зрелище представляет «обрыв хвоста». Как известно, в нормальном состоянии плазменный хвост связан с головой кометы магнитным полем. Однако нередко хвост отрывается от головы и отстает, а на его месте образуется новый. Это случается, когда комета проходит через границу областей солнечного ветра с противоположно направленным магнитным полем. В этот момент магнитная структура хвоста перестраивается, что выглядит как обрыв и формирование нового хвоста. Сложная топология магнитного поля приводит к ускорению заряженных частиц; возможно, этим объясняется появление упомянутых выше быстрых ионов.

Столкновения в Солнечной системе.

Из наблюдаемого количества и орбитальных параметров комет Э.Эпик вычислил вероятность столкновения с ядрами комет различного размера (табл. 2). В среднем 1 раз за 1,5 млрд. лет Земля имеет шанс столкнуться с ядром диаметром 17 км, а это может полностью уничтожить жизнь на территории, равной площади Северной Америки. За 4,5 млрд. лет истории Земли такое могло случаться неоднократно. Гораздо чаще происходят катастрофы меньшего масштаба: в 1908 над Сибирью, вероятно, вошло в атмосферу и взорвалось ядро небольшой кометы, вызвав полегание леса на большой территории.

Эти "хвостатые" обитатели Солнечной системы - кометы. Само название кометы в переводе с греческого означает "волосатая", "косматая". В древней Греции, а затем и в средние века кометы обычно изображали как отрубленные головы с развевающимися волосами.


Комета Икейя-Джанга .
Она была видна в марте 2002 года. Знаменита, в частности, тем, что была видна на небосводе вблизи знаменитой галактики Туманности Андромеды.

Кометы - это бесформенные космические тела в Солнечной системе. Они движутся по сильно вытянутым эллиптическим орбитам. У многих комет период обращения очень велик по человеческим меркам и составляет более 200 лет. Такие кометы называют долгопериодическими. Кометы с периодом менее 200 лет называют короткопериодическими. В настоящее время известно несколько десятков долгопериодических и более 400 короткопериодических комет.



Орбита кометы в сравнении с орбитами планет

Эти космические объекты имеют незначительную массу и вдали от Солнца ничем себя не обнаруживают. Кометы состоят из каменного или металлического ядра, заключенного в ледяную оболочку из замерзших газов (углекислоты, аммиака). По мере приближения к Солнцу комета начинает испаряться, образуя "кому" - облако пыли и газа, окружающее ядро. Причем эти вещества кометы переходят в газообразное состояние сразу из твердого, минуя жидкое - такой фазовый переход называется сублимацией. Ядро и кома образуют голову планеты. По мере приближения к Солнцу газовое облако образует огромный газовый шлейф - хвост длиной в десятки или даже сотни миллионов километров.

Исходящие от Солнца световые лучи и потоки электрических частиц отклоняют кометные хвосты в противоположную от светила сторону. Этот же солнечный ветер вызывает свечение разреженного газа в хвостах комет.



Части кометы
Обратите внимание на два хвоста - пылевой и плазменный

Основная масса кометы сосредоточена в ее ядре, но 99,9% светового излучения исходит от хвоста, ведь ядро очень компактно, а к тому же имеет низкий коэффициент отражения.

Большие кометы могут оставаться видимыми в течение нескольких недель. Облетев Солнце, они удаляются и исчезают из поля зрения. Многие кометы наблюдаются регулярно.



Комета МакНота .
Эта комета стала настоящей сенсацией в январе 2007 года. Яркая, с огромным веерообразным хвостом, она не оставила равнодушных среди тех, кому посчастливилось её увидеть. Но во всей своей красе комета МакНота наблюдалась только в Южном полушарии планеты.

Кометы привлекают к себе всеобщее внимание. Их появление в давние времена вызывало страх и воспринималось как небесное знамение грядущих ужасных событий.




Человеческая история в древности была весьма насыщена разными трагическими событиями, такими как войны, эпидемии, дворцовые перевороты, убийства правителей. Каким-то из этих событий сопутствовали появления ярких комет, и предсказатели стали связывать между собой явления небесные и земные.
На этом знаменитом старинном французском гобелене времен Вильгельма Завоевателя изображена комета Галлея во время её появления в 1066 году. В тот год произошла битва, в которой герцог разгромил войско англосаксонского короля Гарольда II и занял английский трон. Эту победу тогда приписали влияния небесного знамения - кометы. Надпись на гобелене гласит – «дивятся звезде».

На самом деле комета не может оказать сколь заметного воздействия на нашу планету из-за своих ничтожных размеров: масса кометы примерно в миллиард раз меньше массы Земли, а плотность вещества хвоста практически равна нулю. Так, в мае 1910 г. Земля проходила сквозь хвост кометы Галлея, но никаких изменений не испытала.



Гибель кометы Шумейкеров–Леви-9 в гравитационном поле Юпитера
Комета сблизилась с Юпитером в 1992 году и была разорвана силой его тяготения. В июле 1994 года ее осколки столкнулись с Юпитером, вызвав фантастические эффекты в атмосфере планеты.
Комета была открыта 24 марта 1993 г., когда она уже представляла собой цепочку фрагментов.

По своему происхождению кометы представляют собой остатки первичного вещества Солнечной системы. Поэтому их изучение помогает восстановить картину формирования планет, включая Землю.

Самая знаменитая комета - это комета Галлея.



Комета Галлея

Период обращения вокруг Солнца кометы Галлея 76 лет, большая полуось орбиты 17,8 а. е, эксцентриситет 0,97, наклонение орбиты к плоскости эклиптики 162,2°, расстояние в перигелии 0,59 а. е. Размер кометы Галлея - 14 км в длину и 7,5 км в поперечнике.

Именно благодаря ей английский астроном Эдмунд Галлей открыл периодичность появления комет. Сравнив параметры орбит нескольких ярких комет прошлого, он сделал вывод, что это не разные кометы, а одна и та же, периодически возвращающаяся к Солнцу по сильно вытянутому пути. Он предсказал возвращение этой кометы, и его прогноз блестяще подтвердился. Эта комета получила его имя.

С 239 г. до н. э комета Галлея наблюдалась 30 раз. Последний раз она появилась в 1986 г. и в следующий раз будет наблюдаться в 2061 г. В последний визит космической гостьи в наши края ее изучали с близкого расстояния 5 межпланетных зондов – два японских («Сакигаке» и «Суйсей»), два советских («Вега-1» и «Вега-2») и один европейский («Джотто»).

Окружающее нас космическое пространство постоянно находится в движении. Следом за движением галактических объектов, таких как галактики и скопления звезд, по четко определенной траектории двигаются и другие космические объекты, среди которых астроиды и кометы. За некоторыми из них человек наблюдает уже не одну тысячу лет. Вместе с постоянными объектами на нашем небосклоне, Луной и планетами, наш небосвод часто посещают кометы. Со времен своего появления человечество не раз могло наблюдать кометы, приписывая этим небесным телам самые разнообразные толкования и объяснения. Ученые долгое время не могли дать четких объяснений, наблюдая астрофизические явления, которые сопровождают полет столь стремительного и яркого небесного тела.

Характеристика комет и их отличие друг от друга

Несмотря на то, что кометы — явление для космоса достаточно распространенное, видеть летящую комету повезло далеко не всем. Все дело в том, что по космическим меркам полет этого космического тела — явление часто. Если сравнивать период обращения подобного тела, ориентируясь на земное время – это довольно большой промежуток времени.

Кометы – это небольшие по размерам небесные тела, двигающиеся в космическом пространстве по направлению к главной звезде солнечной системы, нашему Солнцу . Описания наблюдаемых с Земли полетов подобных объектов наводят на мысль, что все они являются частью солнечной системы, некогда участвующие в ее формировании. Другими словами, каждая комета – это остатки космического материала, используемого при образовании планет. Практически все известные кометы на сегодняшний день входят в состав нашей звездной системы. Аналогично планетам эти объекты подчиняются тем же законам физики. Однако их движение в космосе имеет свои отличия и особенности.

Основное отличие комет от других космических объектов заключается в форме их орбит. Если планеты двигаются в правильном направлении, по круговым орбитам и лежат в одной плоскости, то комета несется в пространстве совершенно иначе. Эта яркая звезда, внезапно появившаяся на небосклоне, может двигаться в правильном или в обратном направлении, по эксцентрической (вытянутой) орбите. Такое движение влияет на скорость кометы, которая является самой высокой среди показателей всех известных планет и космических объектов нашей Солнечной системы, уступая только нашему главному светилу.

Скорость движения кометы Галлея при прохождении рядом с Землей составляет 70 км/с.

Не совпадает и плоскость орбиты кометы с эклиптической плоскостью нашей системы. Каждая небесная гостья имеет свою орбиту и соответственно свой период обращения. Именно этот факт и лежит в основе классификации комет по периоду обращения. Существует два вида комет:

  • короткопериодические с периодом обращения от двух, пяти лет до пары сотен лет;
  • долгопериодические кометы, совершающие оборот по орбите с периодом от двух, трех сотен лет до миллиона лет.

К первым относятся небесные тела, которые достаточно быстро двигаются по своей орбите. Среди астрономов принято обозначать такие кометы префиксами Р/. В среднем период обращения короткопериодических комет составляет менее 200 лет. Это самый распространенный вид комет, встречаемый в нашем околоземном пространстве и пролетающий в поле зрения наших телескопов. Самая известная комета Галлея совершает свой бег вокруг Солнца за 76 лет. Другие кометы гораздо реже посещают нашу солнечную систему, и мы редко когда становимся свидетелями их появления. Их период обращения составляет сотни, тысячи и миллионы лет. Долгопериодические кометы обозначаются в астрономии префиксом С/.

Считается, что короткопериодические кометы стали заложницами силы притяжения крупных планет солнечной системы, сумевших вырвать этих небесных гостей из крепких объятий дальнего космоса в районе пояса Койпера. Долгопериодические кометы — это более крупные небесные тела, прилетающие к нам из дальних уголков облака Оорта. Именно эта область космоса является родиной всех комет, которые регулярно наведываются с визитом к своей звезде. Через миллионы лет с каждым последующим визитом в солнечную систему размеры долгопериодических комет уменьшаются. В результате такая комета может перейти в разряд короткопериодических, сократив срок своей космической жизни.

За время наблюдений за космосом зафиксированы все известные до сегодняшнего дня кометы. Рассчитаны траектории этих небесных тел, время их очередного появления в пределах солнечной системы и установлены приблизительные размеры. Одно из них даже продемонстрировало нам свою гибель.

Падение в июле 1994 году короткопериодической кометы Шумейкера-Леви 9 на Юпитер стало ярчайшим событием в истории астрономических наблюдений за околоземным пространством. Комета вблизи Юпитера раскололась на фрагменты. Самый крупный из них имел размеры более двух километров. Падение небесной гостьи на Юпитер продолжалось в течение недели, с 17 по 22 июля 1994 года.

Теоретически возможно столкновение Земли с кометой, однако из того числа небесных тел, которые нам известны на сегодняшний день, ни одно из них во время своего путешествия не пересекается с траекторией полета нашей планеты. Сохраняется угроза появления на пути нашей Земли долгопериодической кометы, которая еще вне зоны досягаемости средств обнаружения. В такой ситуации столкновение Земли с кометой может обернуться катастрофой глобального масштаба.

Всего известно более 400 короткопериодических комет, которые регулярно посещают нас. Большое количество долгопериодических комет прилетает к нам из дальнего, открытого космоса, рождаясь в 20–100 тыс. а.е. от нашей звезды. Только в XX веке таких небесных тел зафиксировано более 200. Наблюдать такие удаленные космические объекты в телескоп было практически невозможно. Благодаря телескопу Хаббл появились снимки уголков космоса, на которых удалось обнаружить полет долгопериодической кометы. Этот далекий объект выглядит, как туманность, украшенная хвостом длиной в миллионы километров.

Состав кометы, ее строение и главные особенности

Главная часть этого небесного тела — ядро кометы. Именно в ядре сосредоточена основная масса кометы, которая варьируется от несколько сотен тысяч тонн до миллиона. По своему составу небесные красавицы — ледяные кометы, поэтому при близком рассмотрении являются грязными ледяными комками больших размеров. По своему составу ледяная комета представляет собой конгломерат твердых фрагментов различных размеров, скрепленных космическим льдом. Как правило, лед ядра кометы — это водяной лед с примесью аммиака и углекислоты. Твердые фрагменты состоят из метеорного вещества и могут иметь размеры, сравнимые с частицами пыли или, наоборот, иметь размеры в несколько километров.

В научном мире принято считать, что кометы являются космическими доставщиками воды и органических соединений в открытом космосе. Изучая спектр ядра небесной путешественницы и газовый состав ее хвоста, стала понятна ледяная природа этих комических объектов.

Интересны процессы, которые сопровождают полет кометы в космическом пространстве. Большую часть своего пути, находясь на огромном расстоянии от звезды нашей солнечной системы, эти небесные странницы не видны. Сильно вытянутые эллиптические орбиты способствуют этому. По мере приближения к Солнцу комета нагревается, в результате чего запускается процесс сублимации космического льда, составляющего основу ядра кометы. Говоря понятным языком, ледяная основа кометного ядра, минуя этап плавления, начинает активно испаряться. Вместо пыли и льда под воздействием солнечного ветра молекулы воды разрушаются и образуют вокруг ядра кометы кому. Это своеобразная корона небесной путешественницы, зона, состоящая из молекул водорода. Кома может иметь огромные размеры, растянувшись на сотни тысяч, миллионы километров.

По мере того как космический объект приближается к Солнцу, скорость кометы стремительно растет, начинают действовать не только центробежные силы и гравитация. Под воздействием притяжения Солнца и негравитационных процессов испаряющиеся частицы кометного вещества образуют хвост кометы. Чем ближе объект к Солнцу, тем интенсивнее, больше и ярче хвост кометы, состоящий из разреженной плазмы. Эта часть кометы наиболее заметна и видимая с Земли считается у астрономов одним из самых ярких астрофизических явлений.

Пролетая достаточно близко от Земли, комета позволяет детально рассмотреть всю ее структуру. За головой небесного тела обязательно тянется шлейф, состоящий из пыли, газа и метеорного вещества, которое чаще всего и попадает в дальнейшем на нашу планету в виде метеоров.

История комет, полет которых наблюдался с Земли

Рядом с нашей планетой постоянно пролетают различные космические объекты, озаряя своим присутствием небосвод. Своим появлением кометы часто вызывали у людей необоснованный страх и ужас. Древние оракулы и звездочеты связывали появление кометы с началом опасных жизненных периодов, с наступлением катаклизмов планетарного масштаба. Несмотря на то, что хвост кометы составляет всего миллионную часть массы небесного тела – это наиболее яркая часть космического объекта, дающая 0,99% света в видимом спектре.

Первой кометой, которую сумели обнаружить в телескоп, стала Большая комета 1680 года, более известная как комета Ньютона. Благодаря появлению этого объекта ученому удалось получить подтверждения своих теорий относительно законов Кеплера.

За время наблюдений за небесной сферой человечеству удалось создать список наиболее частых космических гостей, регулярно посещающих нашу солнечную систему. В этом списке на первом месте определенно стоит комета Галлея – знаменитость, которая озарила нас своим присутствием уже в тридцатый раз. Это небесное тело наблюдал еще Аристотель. Ближайшая комета получила свое название благодаря стараниям астронома Галлея в 1682 году, рассчитавшего ее орбиту и следующее появление на небе. Наша спутница с регулярностью 75-76 лет пролетает в зоне нашей видимости. Характерной особенностью нашей гостьи является то, что, несмотря на яркий след в ночном небе, ядро кометы имеет практически темную поверхность, напоминая собой обычный кусок каменного угля.

На втором месте по популярности и знаменитости находится комета Энке. Это небесное тело имеет один из самых коротких периодов обращения, который равняется 3,29 земных года. Благодаря этой гостье мы можем регулярно наблюдать на ночном небе метеорный поток Тауриды.

Другие наиболее знаменитые последние кометы, осчастливившие нас своим появлением, имеют также громадные периоды обращения. В 2011 году была открыта комета Лавджоя, сумевшая пролететь в непосредственной близости от Солнца и при этом остаться целой и невредимой. Эта комета относится к долгопериодическим, с периодом обращения 13 500 лет. С момента своего обнаружения эта небесная гостья будет пребывать в области солнечной системы до 2050 года, после чего на долгие 9000 лет покинет пределы ближнего космоса.

Самым ярким событием начала нового тысячелетия, в прямом и в переносном смысле, стала комета Макнота, открытая в 2006 году. Это небесное светило можно было наблюдать даже невооруженным глазом. Следующее посещение нашей солнечной системы этой яркой красавицей намечено через 90 тыс. лет.

Следующая комета, которая может посетить наш небосвод в ближайшее время, вероятно будет 185P/Петрю. Ее станет заметно, начиная с 27 января 2018 года. На ночном небе это светило будет соответствовать яркости 11 звездной величины.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

2024 english-speak.ru. Изучение английского языка.