Максвелл биография кратко. Максвелл Джеймс - биография, факты из жизни, фотографии, справочная информация. Оценка по биографии

Английский математик, физик и механик Джеймс Клерк Максвелл родился в городе Эдинбурге (Шотландия) 13 июня 1831 года. Вскоре семья будущего ученого переехала в свое имение Миддлби, где и прошло детство мальчика.

В 1841 году, вновь вернувшись в Эдинбург, юноша поступил в Эдинбургскую академию. Окончив ее, Максвелл стал учиться в одноименном университете.

В 1853 году он поступил в Тринити-колледж Кембриджа. Там Максвелл увлекся изучением электричества и вскоре приступил к экспериментальным исследованиям в данной области.

В 50-е годы ученый активно занимался преподавательской деятельностью, работая в родном Кембридже, а затем в Абердинском университете и в королевском колледже Лондона. В это время им была создана теория цветов, которая в дальнейшем сделала возможным появление цветной фотографии, а также разработана теория газов, ставшая основой современной статической механики.

В 1864–65 году Максвелл создал свою знаменитую «Динамическую теорию электромагнитного поля», ставшую его главным научным трудом и считающуюся вершиной математической мысли того времени. В 1866 году он открыл закон распределения молекул идеального газа по скоростям, названный в дальнейшем по фамилии ученого.

В 1871 году Максвелл вновь стал работать в Кембриджском университете в должности профессора экспериментальной физики. В это время им был написан энциклопедический «Трактат об электричестве и магнетизме» (1873), посвященный памяти Майкла Фарадея.

МАКСВЕЛЛ (Maxwell), Джеймс Клерк

Английский физик Джеймс Клерк Максвелл родился в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847–1850), затем в Кембриджском (1850–1854) университетах. В 1855 г. Максвелл стал членом совета Тринити-колледжа, в 1856–1860 гг. был профессором Маришал-колледжа Абердинского университета, с 1860 г. возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 г. в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Там он продолжал заниматься наукой, написал несколько сочинений по физике и математике. В 1871 г. в Кембриджском университете занял кафедру экспериментальной физики. Максвелл организовал научно-исследовательскую лабораторию, которая открылась 16 июня 1874 г. и была названа Кавендишской – в честь Генри Кавендиша .

Свою первую научную работу Максвелл выполнил еще в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую – желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. В 1860 г. за работы по восприятию цвета и оптике Максвелл был награжден медалью Румфорда.

В 1857 г. Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна. Эти образования были открыты Галилеем в начале XVII в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж. Адамса.

Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 г. ученый выступил на заседании Британской ассоциации с докладом, в котором привел распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Рудольфа Клаузиуса , который ввел понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса). В 1867 г. он показал статистическую природу второго начала термодинамики.

В 1831 г., в год рождения Максвелла, Майкл Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (1857). В 1860–1865 гг. Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е – закон сохранения количества электричества; 4-е – вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3·10 10 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А. Физо. В октябре 1861 г. Максвелл сообщил Фарадею о своем открытии: свет – это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла «Динамическая теория электромагнитного поля» (1864), а итог его работ по электродинамике подвел знаменитый «Трактат об электричестве и магнетизме» (1873).

МАКСВЕЛЛ, ДЖЕЙМС КЛЕРК (Maxwell, James Clerk) (1831–1879), английский физик. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847–1850), затем в Кембриджском (1850–1854) университетах. В 1855 стал членом совета Тринити-колледжа, в 1856–1860 был профессором Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Продолжал заниматься наукой, написал несколько сочинений по физике и математике. В 1871 в Кембриджском университете занял кафедру экспериментальной физики. Организовал научно-исследовательскую лабораторию, которая открылась 16 июня 1874 и была названа Кавендишской – в честь Г.Кавендиша .

Свою первую научную работу Максвелл выполнил еще в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую – желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. В 1860 за работы по восприятию цвета и оптике Максвелл был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса.

Одной из первых работ Максвелла стала его кинетическая теория газов. В 1859 ученый выступил на заседании Британской ассоциации с докладом, в котором привел распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса ». В рамках своей теории Максвелл объяснил закон Авогадро , диффузию, теплопроводность, внутреннее трение (теория переноса). В 1867 показал статистическую природу второго начала термодинамики («демон Максвелла»).

В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман , придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force , 1857). В 1860–1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е – магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е – закон сохранения количества электричества; 4-е – вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч 10 10 см/с, что близко к скорости света, измеренной семью годами ранее французским физиком А.Физо . В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет – это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап исследований изложен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism , 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873).

Последние годы жизни Максвелл занимался подготовкой к печати и изданием рукописного наследия Кавендиша. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879.

Биография

Родился в семье шотландского дворянина из знатного рода Клерков (Clerks).

Учился сначала в Эдинбургской академии, Эдинбургском университете (1847-1850), затем в Кембриджском (1850-1854) университете (Питерхауз и Тринити-колледж).

Научная деятельность

Свою первую научную работу Максвелл выполнил ещё в школе, придумав простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его «Трудах». В бытность членом совета Тринити-колледжа занимался экспериментами по теории цветов , выступая как продолжатель теории Юнга и теории трёх основных цветов Гельмгольца . В экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета (диск Максвелла). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - жёлтым, он казался оранжевым; смешивание синего и жёлтого создавало впечатление зелёного. В 1860 году за работы по восприятию цвета и оптике Максвелл был награждён медалью Румфорда.

Одной из первых работ Максвелла стала его кинетическая теория газов . В 1859 году учёный выступил на заседании Британской ассоциации с докладом, в котором привёл распределение молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р. Клаузиуса , который ввёл понятие «средней длины свободного пробега». Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что «частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, то есть в соответствии со статистикой Гаусса». В рамках своей теории Максвелл объяснил закон Авогадро , диффузию , теплопроводность , внутреннее трение (теория переноса). В 1867 показал статистическую природу второго начала термодинамики («демон Максвелла »).

В 1831, в год рождения Максвелла, М. Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции . Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие учёные, как А. М. Ампер и Ф. Нейман, придерживались концепции дальнодействия , рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий , которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Силовые линии заполняют все окружающее пространство (поле , по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (Faraday’s Lines of Force , 1857). В 1860-1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля.

Продолжая развивать эти идеи, Максвелл пришёл к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, то есть должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3,4*10 10 см/с, что близко к скорости света , измеренной семью годами ранее французским физиком А. Физо . В октябре 1861 Максвелл сообщил Фарадею о своём открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, то есть разновидность электромагнитных волн . Этот завершающий этап исследований изложен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвёл знаменитый Трактат об электричестве и магнетизме (1873).

Теория электромагнитного поля и, в особенности, следующий из неё вывод о существовании электромагнитных волн при жизни Максвелла оставались чисто теоретическими положениями, не имевшими никакого экспериментального подтверждения, и современниками зачастую воспринимались как «игра ума». В 1887г. немецкий физик Генрих Герц поставил эксперимент, полностью подтвердивший теоретические выводы Максвелла.

Последние годы жизни Максвелл занимался подготовкой к печати и изданием рукописного наследия Кавендиша. Два больших тома вышли в октябре 1879.

(13.06.1831 - 05.11.1879)

((1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики. Родился 13 июня 1831 в Эдинбурге в семье шотландского дворянина из знатного рода Клерков. Учился сначала в Эдинбургском (1847-1850), затем в Кембриджском (1850-1854) университете. В 1855 стал членом совета Тринити-колледжа, в 1856-1860 был профессором натурфилософии Маришал-колледжа Абердинского университета, с 1860 возглавлял кафедру физики и астрономии в Кингз-колледже Лондонского университета. В 1865 в связи с серьезной болезнью Максвелл отказался от кафедры и поселился в своем родовом поместье Гленлэр близ Эдинбурга. Здесь он продолжал заниматься наукой, написал несколько сочинений по физике и математике.

В 1871 в Кембриджском университете была учреждена кафедра экспериментальной физики, которую Максвелл согласился занять. Здесь он взял на себя бремя по организации при кафедре научно-исследовательской лаборатории, первой физической лаборатории в Англии. Средства на ее создание были пожертвованы герцогом Девонширским, лордом-канцлером Университета, но все организационные работы велись под наблюдением и по указаниям Максвелла (кроме того, он вложил в нее немало личных средств). Лаборатория открылась 16 июня 1874 и была названа Кавендишской - в честь замечательного английского ученого конца 18 в. Г.Кавендиша, которому герцог доводился внучатым племянником. Лаборатория была приспособлена как для научной работы, так и для лекционных демонстраций. Впоследствии она стала одной из самых знаменитых физических лабораторий мира.

Последние годы жизни Максвелл много занимался подготовкой к печати и изданием огромного рукописного наследия Кавендиша - его теоретических и экспериментальных работ по электричеству. Два больших тома вышли в октябре 1879. Умер Максвелл в Кембридже 5 ноября 1879. После отпевания в часовне Тринити-колледжа он был похоронен на фамильном кладбище в Шотландии.

Свою первую научную работу Максвелл выполнил еще в школе: в возрасте 15 лет он придумал простой способ вычерчивания овальных фигур. Эта работа была доложена на заседании Королевского общества и даже опубликована в его "Трудах". В бытность членом Тринити-колледжа он занимался экспериментами по теории цветов, выступая как продолжатель теории Юнга и теории трех основных цветов Гельмгольца. В своих экспериментах по смешиванию цветов Максвелл применил особый волчок, диск которого был разделен на секторы, окрашенные в разные цвета ("диск Максвелла"). При быстром вращении волчка цвета сливались: если диск был закрашен так, как расположены цвета спектра, он казался белым; если одну его половину закрашивали красным, а другую - желтым, он казался оранжевым; смешивание синего и желтого создавало впечатление зеленого. Разные комбинации цветов давали разные оттенки. Несколько позже Максвелл с успехом демонстрировал этот прибор на своих лекциях в Королевском обществе. В 1860 за работы по восприятию цвета и оптике он был награжден медалью Румфорда.

В 1857 Кембриджский университет объявил конкурс на лучшую работу об устойчивости колец Сатурна, в котором Максвелл решил принять участие. Эти образования были открыты Галилеем в начале 17 в. и представляли удивительную загадку природы: планета казалась окруженной тремя сплошными концентрическими кольцами, состоящими из вещества неизвестной природы. Лаплас доказал, что они не могут быть твердыми. Проведя математический анализ, Максвелл убедился, что они не могут быть и жидкими, и пришел к заключению, что подобная структура является устойчивой только в том случае, если она состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. За эту работу Максвелл получил премию Дж.Адамса и сразу же стал лидером математической физики.

Одной из первых работ Максвелла, внесших наиболее весомый вклад в науку, стала его кинетическая теория газов. В 1859 он выступил на заседании Британской ассоциации с докладом, в котором дал вывод распределения молекул по скоростям (максвелловское распределение). Максвелл развил представления своего предшественника в разработке кинетической теории газов Р.Клаузиуса, который ввел понятие "средней длины свободного пробега" (среднего расстояния, проходимого молекулой газа между ее столкновением с другой молекулой). Максвелл исходил из представления о газе как об ансамбле множества идеально упругих шариков, хаотически движущихся в замкнутом пространстве и претерпевающих лишь упругие столкновения. Шарики (молекулы) можно разделить на группы по скоростям, при этом в стационарном состоянии число молекул в каждой группе остается постоянным, хотя они могут выходить из групп и входить в них. Из такого рассмотрения следовало, что "частицы распределяются по скоростям по такому же закону, по какому распределяются ошибки наблюдений в теории метода наименьших квадратов, т.е. в соответствии со статистикой Гаусса". Так впервые в описание физических явлений вошла статистика. В рамках своей теории Максвелл объяснил закон Авогадро, диффузию, теплопроводность, внутреннее трение (теория переноса).

В 1867 показал статистическую природу второго начала термодинамики ("демон Максвелла"). В 1831, в год рождения Максвелла, М.Фарадей проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества и магнетизма примерно 20 лет спустя, когда существовали два взгляда на природу электрических и магнитных эффектов. Такие ученые, как А.М.Ампер и Ф.Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами. Фарадей был приверженцем идеи силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Они заполняют все окружающее пространство (поле, по терминологии Фарадея) и обусловливают электрические и магнитные взаимодействия. Максвелл самым тщательным образом изучил работы Фарадея и почти всю свою творческую жизнь развивал идеи поля.

Следуя Фарадею, он разработал гидродинамическую модель силовых линий и выразил известные тогда соотношения электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе Фарадеевы силовые линии (Faraday"s Lines of Force), направленной Фарадею в 1857. В 1860-1865 Максвелл создал теорию электромагнитного поля, которую он сформулировал в виде системы уравнений (уравнения Максвелла), описывающих все основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е - магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е - закон сохранения количества электричества; 4-е - вихревой характер магнитного поля. Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения электрического и магнитного полей должны вызывать изменения в силовых линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит от диэлектрической и магнитной проницаемости среды и равна отношению электромагнитной единицы электричества к электростатической. По данным Максвелла и других исследователей, это отношение составляет 3Ч1010 см/с, что очень близко к скорости света, измеренной семью годами ранее французским физиком А.Физо.

В октябре 1861 Максвелл сообщил Фарадею о своем открытии: свет - это электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность электромагнитных волн. Этот завершающий этап был отражен в работе Максвелла Динамическая теория электромагнитного поля (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873). Экспериментальная и техническая задача получения и использования электромагнитных волн в широком спектральном диапазоне, в котором на долю видимого света приходится лишь малая часть, была успешно решена последующими поколениями ученых и инженеров. Применения теории Максвелла дали миру все виды радиосвязи, включая радиовещание и телевидение, радиолокацию и навигационные средства, а также средства для управления ракетами и спутниками. 1831-1879), английский физик, создатель классической электродинамики, один из основоположников статистической физики.

2024 english-speak.ru. Изучение английского языка.