Множества а и в заданы числовыми промежутками. Понятие множества. Способы задания множеств. Операция декартова произведения множеств

Множества. Операции над множествами


Способы задания множества

Включение и равенство множеств

Диаграммы Эйлера-Венна

Операции над множествами

а) Объединение множеств

б) Пересечение множеств

в) Разность множеств

Дополнение множества


Понятие множества принадлежит к числу основных, неопределяемых понятий математики. Оно не сводится к другим, более простым понятиям. Поэтому его нельзя определить, а можно лишь пояснить, указывая синонимы слова «множество» и приводя примеры множеств: множество – набор, совокупность, собрание каких-либо объектов (элементов), обладающих общим для всех их характеристическим свойством.

Примеры множеств:

1) множество студентов в данной аудитории;

2) множество людей, живущих на нашей планете в данный момент времени;

3) множество точек данной геометрической фигуры;

4) множество чётных чисел;

5) множество корней уравнения х 2 -5х+6=0;

6) множество действительных корней уравнения х 2 +9=0;

Основоположник теории множеств немецкий математик Георг Кантор (1845-1918) писал: «Множество есть многое, мыслимое нами как единое». И хотя это высказывание учёного не является в полном смысле логическим определением понятия множества, но оно верно поясняет, что когда говорят о множестве, то имеют в виду некоторое собрание объектов, причём само это собрание рассматривается как единое целое, как один (новый) объект.

Объекты, составляющие данное множество, называют его элементами.

Множество обычно обозначают большими латинскими буквами, а элементы множества − малыми латинскими буквам. Если элемент, а принадлежит множеству А, то пишут: а

А, а если а не принадлежит А, то пишут: а А.

Например, пусть N–множество натуральных чисел. Тогда 5

N , но N, N. Если А - множество корней уравнения х 2 -5х+6=0, то 3 А, а 4А.

В математике часто исследуются так называемые числовые множества, т.е. множества, элементами которых являются числа. Для самых основных числовых множеств утвердились следующие обозначения:

N- множество всех натуральных чисел;

Z- множество всех целых чисел;

Q- множество всех рациональных чисел;

R- множество всех действительных чисел.

Приняты также обозначения Z + , Q + , R + соответственно для множеств всех неотрицательных целых, рациональных и действительных чисел, и Z Ї , Q Ї , R Ї -для множеств всех отрицательных целых, рациональных и действительных чисел.

Способы задания множества

Множество А считается заданным, если относительно любого объекта а можно установить, принадлежит этот объект множеству А или не принадлежит; другими словами, если можно определить, является ли а элементом множества А или не является. Существуют два основных способа задания множества:

1) перечисление элементов множества;

2) указание характеристического свойства элементов множества, т.е. такого свойства, которым обладают все элементы данного множества и только они.

Первым способом особенно часто задаются конечные множества. Например, множество студентов учебной группы задаётся их списком. Множество, состоящее из элементов a, b, c, … ,d ,обозначают с помощью фигурных скобок: А={a; b; c; …;d} . Множество корней уравнения х 2 -5х+6=0 состоит из двух чисел 2 и 3: А={2; 3}. Множество В целых решений неравенства -2 < х < 3 состоит из чисел –1, 0, 1, 2, поэтому В={–1; 0; 1; 2}.

Второй способ задания множества является более универсальным. Множество элементов х, обладающих данным характеристическим свойством Р(х), также записывают с помощью фигурных скобок: Х={х | Р (х)}, и читают: множество Х состоит из элементов х, таких, что выполняется свойство Р(х). Например, А={х | х 2 -5х+6=0}. Решив уравнение х 2 -5х+6=0, мы можем записать множество А первым способом: А={2; 3}.

Другой пример: Х={х | -1 ≤ х < 4, х

Z}, т.е. Х есть множество целых чисел х, таких, что –1 ≤ х < 4, значит, по-другому: Х={-1; 0; 1; 2; 3}.

Рассмотрим и такой пример: F={f | │fґ(x)│≤ 1 , 1 < x < 2}, т.е. F- множество функций f, производная которых в интервале (1; 2) не превосходит по абсолютной величине числа 1.

Может случиться, что характеристическим свойством, определяющим множество А, не обладает ни один объект. Тогда говорят, что множество А - пустое (не содержит ни одного элемента) и пишут: А= Ш.

Например, А={х | хІ+9=0, х

R} –множество действительных чисел х, таких, что хІ+9=0- пустое множество, т.к. таких действительных чисел нет.

Включение и равенство множеств

Пусть Х и У – два множества. Если каждый элемент х множества Х является элементом множества У, то говорят, что множество Х содержится во множестве У и пишут: Х

У или У Х. Говорят также, что Х включено в У или У включает Х, или что Х является подмножеством множества У. Знаки включения или относятся только ко множествам и их не следует смешивать со знаками принадлежности Î и . Если, например, А - множество всех студентов вуза, а В – множество студентов-первокурсников этого вуза, то В есть подмножество А, т.е. В А. Пустое множество считают подмножеством любого множества Х, т.е. Ш Х, каким бы ни было множество Х. Ясно также, что каждое множество является подмножеством самого себя: Х Х.

Если для двух множеств Х и У одновременно имеют место два включения Х

У и У Х, т.е. Х есть подмножество множества У и У есть подмножество множества Х, то множества Х и У состоят из одних и тех же элементов. Такие множества Х и У называют равными и пишут: Х=У. Например, если А={2; 3}, а В={х | хІ –5х+6=0}, то А=В. У, но Х≠ У, т.е. существует хотя бы один элемент множества У, не принадлежащий Х, то говорят, что Х есть собственное подмножество множества У, и пишут: Х У. Например: NZ, ZQ, QR. Далее нам потребуется множество, которое содержит в качестве своего подмножества любое другое множество. Такое «всеобъемлющее» множество будем называть универсальным и обозначать буквой U .

Диаграммы Эйлера-Венна

Для наглядного представления множеств используют диаграммы Эйлера-Венна. В этом случае множества обозначают областями на плоскости и внутри этих областей условно располагают элементы множества. Часто все множества на диаграмме размещают внутри прямоугольника, который представляет собой универсальное множество U. Если элемент принадлежит более чем одному множеству, то области, отвечающие таким множествам, должны перекрываться, чтобы общий элемент мог одновременно находиться в соответствующих областях. Выбор формы областей, изображающих множества на диаграммах, может быть произвольным (круги, внутренности эллипсов, многоугольники и т.п.). Покажем, например, с помощью диаграммы Эйлера-Венна, что множество А является подмножеством множества В.

В математике понятие множества является одним из основных, фундаментальным, однако единого определения множества не существует. Одним из наиболее устоявшихся определений множества является следующее: под множеством понимают любое собрание определённых и отличных друг от друга объектов, мыслимых как единое целое. Создатель теории множеств немецкий математик Георг Кантор (1845-1918) говорил так: "Множество есть многое, мыслимое нами как целое".

Множества как тип данных оказались очень удобными для программирования сложных жизненных ситуаций, так как с их помощью можно точно моделировать объекты реального мира и компактно отображать сложные логические взаимоотношения. Множества применяются в языке программирования Паскаль и один из примеров решения мы ниже разберём. Кроме того, на основе теории множества создана концепция реляционных баз данных, а на основе операций над множествами - реляционная алгебра и её операции - используемые в языках запросов к базам данных, в частности, SQL.

Пример 0 (Паскаль). Существует набор продуктов, продаваемых в нескольких магазинах города. Определить: какие продукты есть во всех магазинах города; полный набор продуктов в городе.

Решение. Определяем базовый тип данных Food (продукты), он может принимать значения, соответствующие названиями продуктов (например, hleb). Объявляем тип множества, он определяет все подмножества, составленные из комбинаций значений базового типа, то есть Food (продукты). И формируем подмножества: магазины "Солнышко", "Ветерок", "Огонёк", а также производные подмножества: MinFood (продукты, которые есть во всех магазинах), MaxFood (полный набор продуктов в городе). Далее прописываем операции для получения производных подмножеств. Подмножество MinFood получается в результате пересечения подмножеств Solnyshko, Veterok и Ogonyok и включает те и только те элементы этих подмножеств, которые включены в каждое их этих подмножеств (в Паскале операция пересечения множеств обозначается звёздочкой: A * B * C, математическое обозначение пересечения множеств дано далее). Подмножество MaxFood получается в результате объединения тех же подмножеств и включает элементы, которые включены во все подмножества (в Паскале операция объединения множеств обозначается знаком "плюс": A + B + C, математическое обозначение объединения множеств дано далее).

Код PASCAL

Program Shops; type Food=(hleb, moloko, myaso, syr, sol, sahar, maslo, ryba); Shop = set of Food; var Solnyshko, Veterok, Ogonyok, MinFood, MaxFood: Shop; Begin Solnyshko:=; Veterok:=; Ogonyok:=; ... MinFood:=Solnyshko * Veterok * Ogonyok; MaxFood:=Solnyshko + Veterok + Ogonyok; End.

Какие бывают множества

Объекты, составляющие множества - объекты нашей интуиции или интеллекта - могут быть самой различной природы. В примере в первом параграфе мы разобрали множества, включающие набор продуктов. Множества могут состоять, например, и из всех букв русского алфавита. В математике изучаются множества чисел, например, состоящие из всех:

Натуральных чисел 0, 1, 2, 3, 4, ...

Простых чисел

Чётных целых чисел

и т.п. (основные числовые множества рассмотрены в этого материала).

Объекты, составляющие множество, называются его элементами. Можно сказать, что множество - это "мешок с элементами". Очень важно: в множестве не бывает одинаковых элементов.

Множества бывают конечными и бесконечными. Конечное множество - это множество, для которого существует натуральное число, являющееся числом его элементов. Например, множество первых пяти неотрицательных целых нечётных чисел является конечным множеством. Множество, не являющееся конечным, называется бесконечным. Например, множество всех натуральных чисел является бесконечным множеством.

Если M - множество, а a - его элемент, то пишут: a M , что означает "a принадлежит множеству M ".

Из первого (нулевого) примера на Паскале с продуктами, которые есть в тех или иных магазинах:

hleb VETEROK ,

что означает: элемент "hleb" принадлежит множеству продуктов, которые есть в магазине "VETEROK".

Существуют два основных способа задания множеств: перечисление и описание.

Множество можно задать, перечислив все его элементы, например:

VETEROK = {hleb , syr , maslo } ,

A = {7 , 14 , 28 } .

Перечислением можно задать только конечное множество. Хотя можно сделать это и описанием. Но бесконечные множества можно задать только описанием.

Для описания множеств используется следующий способ. Пусть p (x ) - некоторое высказывание, которое описывает свойства переменной x , областью значений которых является множество M . Тогда через M = {x | p (x )} обозначаентся множество, состоящее из всех тех и только тех элементов, для которых высказывание p (x ) истинно. Это выражение читается так: "Множество M , состоящее из всех таких x , что p (x ) ".

Например, запись

M = {x | x ² - 3x + 2 = 0}

Пример 6. Согласно опросу 100 покупателей рынка, купивших цитрусовые, апельсины купили 29 покупателей, лимоны - 30 покупателей, мандарины - 9, только мандарины - 1, апельсины и лимоны - 10, лимоны и мандарины - 4, все три вида фруктов - 3 покупателя. Сколько покупателей не купили ни одного вида перечисленных здесь цитрусовых? Сколько покупателей купили только лимоны?

Операция декартова произведения множеств

Для определения ещё одной важной операции над множествами - декартова произведения множеств введём понятие упорядоченного набора длины n .

Длиной набора называется число n его компонент. Набор, составленный из элементов , взятых именно в этом порядке, обозначается . При этом i я () компонента набора есть .

Сейчас последует строгое определение, которое, возможно, не сразу понятно, но после этого определения будет картинка, по которой станет понятно, как получить декартово произведение множеств.

Декартовым (прямым) произведением множеств называется множество, обозначаемое и состоящее из всех тех и только тех наборов длины n , i -я компонента которых принадлежит .

Например, если , , ,

Множество - одно из основных понятий современной математики. Это понятие не сводится к другим понятиям и не определяется. Объекты, составляющие множество, называют его Элементами . Множества обозначают заглавными латинскими буквами: A , B , C , X , …, их элементы - прописными буквами: A , B , C , X , … или буквами с индексами A 1, A 2, A 3, ... Множество, не содержащее ни одного элемента, называют Пустым и обозначают Æ.

Чтобы задать множество, необходимо знать, какие объекты принадлежат множеству, а какие нет. Если множество содержит немного элементов, то его можно задать, перечислив все его элементы. Если множество задано списком, то его элементы записывают в фигурных скобках через точку с запятой. Множество цифр можно записать следующим образом: A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 0}; множество простых чисел, меньших 20, - B = {2; 3; 5; 7; 11; 13; 17; 19}; множество дней недели - С = {понедельник; вторник; среда; четверг; пятница; суббота; воскресенье}.

Однако задать множество списком можно только тогда, когда оно содержит конечное число элементов (но и это неудобно, если число элементов множества велико). Существует универсальный способ задания множеств. Множество может быть задано с помощью Характеристического свойства , то есть такого свойства, которым обладают все элементы множества, и не обладают объекты, не принадлежащие множеству. Задание множества с помощью характеристического свойства записывают следующим образом: А = {Х | P (Х )}, где P (X ) - характеристическое свойство.

Приведем несколько примеров:

1. Если , то .

2. Пусть B - множество остатков от деления натуральных чисел на 7. Тогда .

3. Если D - множество действительных чисел, не меньших двух и не больших семи, то D - отрезок .

Рассмотрим два множества A и B . Если каждый элемент множества B является элементом множества A , то говорят, что B - Подмножество множества A . Этот факт записывают так: В Ì А . Считают, что пустое множество является подмножеством любого множества. Каждое непустое множество А имеет хотя бы два подмножества - само множество А и пустое множество.

Пусть даны два множества А и В .

Пересечением (Произведением ) множеств А и В называется множество, состоящее из всех элементов, принадлежащих одновременно и множеству А , и множеству В . Обозначают пересечение множеств A Ç B :

A Ç B = { Х | Х Î A и Х Î B }.

Объединением (Суммой ) множеств А и В называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А или В . Обозначают объединение множеств A È B :

A È B = { Х | Х Î A или Х Î B }.

Разностью множеств А и В называется множество, состоящее из всех элементов множества А , не принадлежащих множеству В . Обозначают разность множеств A \ B :

A \ B = { Х | Х Î A и Х Ï B }.

Элементами множества могут быть различные объекты - числа, слова, геометрические фигуры, функции и т. д. В математике особую роль играют Числовые множества , то есть множества, элементами которых являются числа.

Например: ¥ - множество натуральных чисел, ¢ - множество целых чисел, ¤ - множество рациональных чисел, ¡ - множество действительных чисел.

Напомним, что натуральными называют числа, используемые при счете предметов, то есть . Целыми считают натуральные числа, противоположные им отрицательные числа и число ноль. Таким образом, . Рациональные числа - это обыкновенные дроби с целым числителем и натуральным знаменателем: . Любое рациональное число может быть записано в виде конечной или бесконечной периодической десятичной дроби.

Все десятичные дроби (в том числе и бесконечные непериодические) образуют множество действительных чисел. Действительные числа изображают точками на координатной прямой (числовой оси). Точка О , соответствующая числу 0, разбивает координатную прямую на два луча: положительный и отрицательный. Число, изображением которого на координатной прямой является точка М , называется Координатой точки М . Если , то точка с координатой лежит левее точки с координатой .

Особое значение в математике имеют подмножества множества ¡, называемые числовыми промежутками: Отрезок [A ; B ] - множество точек Х , удовлетворяющих условию ; Интервал (A ; B ) - множество точек Х , удовлетворяющих условию ; Полуинтервалы [A ; B ) и (A ; B ] - множества точек Х , удовлетворяющих условиям и соответственно; бесконечные промежутки (A ; +¥), (- ¥; B ), [A ; +¥), (-¥; B ] - множества точек Х , удовлетворяющих условиям , , , соответственно.


Решение некоторых математических задач заставляет находить пересечение и объединение числовых множеств . Мы уже познакомились с принятыми обозначениями числовых множеств , а в этой статье мы тщательно и на примерах разберемся с нахождением пересечения и объединения числовых множеств. Эти навыки пригодятся, в частности, в процессе решения неравенств с одной переменной и их систем.

Навигация по странице.

Простейшие случаи

Под простейшими случаями мы будем понимать нахождение пересечения и объединения числовых множеств, являющихся набором отдельных чисел. В этих случаях достаточно использовать определения пересечения и объединения множеств .

Напомним, что

Определение.

объединением двух множеств является множество, каждый элемент которого является элементом какого-либо из исходных множеств, а пересечением множеств называется множество, состоящее из всех общих элементов исходных множеств.

Из данных определений несложно получить следующие правила нахождения пересечения и объединения множеств:

  • Для того чтобы составить объединение двух числовых множеств, содержащих конечное число элементов, нужно записать все элементы одного множества и к ним дописать недостающие элементы из второго.
  • Для того чтобы составить пересечение двух числовых множеств, надо последовательно брать элементы первого множества и проверять, принадлежат ли они второму множеству, те из них, которые принадлежат, и будут составлять пересечение.

Действительно, полученное по первому правилу множество будет состоять из всех элементов, принадлежащих хотя бы одному из исходных множеств, поэтому будет объединением этих множеств по определению. А множество, составленное по второму правилу, будет содержать все общие элементы исходных множеств, то есть, будет пересечением исходных множеств.

Рассмотрим на конкретных примерах применение озвученных правил для нахождения пересечения и объединения множеств.

Например, пусть нужно найти объединение числовых множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Записываем все элементы, например, множества A , имеем 3 , 5 , 7 , 12 , и к ним добавляем недостающие элементы множества B , то есть, 2 , 8 , 11 и 13 , в результате имеем числовое множество {3, 5, 7, 12, 2, 8, 11, 13} . Не помешает упорядочить элементы полученного множества, в итоге получаем искомое объединение: A∪B={2, 3, 5, 7, 8, 11, 12, 13} .

Теперь найдем пересечение двух числовых множеств из предыдущего примера A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} . Согласно правилу, будем последовательно перебирать элементы первого множества A и проверять, входят ли они во множество B . Берем первый элемент 3 , он не принадлежит множеству B , следовательно, он не будет и элементом искомого пересечения. Берем второй элемент множества A , это число 5 . Оно принадлежит множеству B , поэтому принадлежит и пересечению множеств A и B . Так найден первый элемент искомого пересечения – число 5 . Переходим к третьему элементу множества A , это число 7 . Оно не принадлежит B , значит, не принадлежит и пересечению. Наконец, остался последний элемент множества A – число 12 . Оно принадлежит множеству B , следовательно, оно является и элементом пересечения. Итак, пересечение множеств A={3, 5, 7, 12} и B={2, 5, 8, 11, 12, 13} – это есть множество, состоящее из двух элементов 5 и 12 , то есть, A∩B={5, 12} .

Как Вы заметили, выше мы говорили о нахождении пересечения и объединения двух числовых множеств. Что же касается пересечения и объединения трех и большего числа множеств, то его нахождение можно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы найти пересечение трех множеств A , B и D можно сначала найти пересечение A и B , после чего найти пересечение полученного результата с множеством D . А теперь конкретно: возьмем числовые множества A={3, 9, 4, 3, 5, 21} , B={2, 7, 9, 21} и D={7, 9, 1, 3} и найдем их пересечение. Имеем A∩B={9, 21} , а пересечение полученного множества с множеством D есть {9} . Таким образом, A∩B∩D={9} .

Однако на практике для нахождения пересечения трех, четырех и т.д. простейших числовых множеств, состоящих из конечного числа отдельных чисел, удобно использовать правила, схожие с указанными выше правилами.

Так, чтобы получить объединение трех и большего числа множеств указанного типа, надо к числам первого числового множества добавить недостающие числа второго, к записанным числам добавляем недостающие числа третьего множества и так далее. Чтобы пояснить этот момент возьмем числовые множества A={1, 2} , B={2, 3} и D={1, 3, 4, 5} . К элементам 1 и 2 числового множества A добавляем недостающее число 3 множества B , получаем 1 , 2 , 3 , и к этим числам добавляем недостающие числа 4 и 5 множества D , в итоге получаем нужное нам объединение трех множеств: A∪B∪C={1, 2, 3, 4, 5} .

Что же касается нахождения пересечения трех, четырех и т.д. числовых множеств, состоящих из конечного числа отдельных чисел, нужно последовательно перебрать числа первого множества и проверять, принадлежит ли проверяемое число каждому из остальных множеств. Если да, то это число является элементом пересечения, если нет – то не является. Здесь лишь заметим, что целесообразно в качестве первого брать множество с наименьшим числом элементов. В качестве примера возьмем четыре числовых множества A={3, 1, 7, 12, 5, 2} , B={1, 0, 2, 12} , D={7, 11, 2, 1, 6} , E={1, 7, 15, 8, 2, 6} и найдем их пересечение. Очевидно, множество B содержит меньше всего элементов, поэтому для нахождения пересечения исходных четырех множеств будем брать элементы множестваB и проверять, входят ли они в остальные множества. Итак, берем 1 , это число является элементами и множества A , и D и E , так что это первый элемент искомого пересечения. Берем второй элемент множества B – это нуль. Это число не является элементом множества A , поэтому не будет является и элементом пересечения. Проверяем третий элемент множества B – число 2 . Это число является элементом всех остальных множеств, поэтому, является вторим найденным элементом пересечения. Наконец, остается четвертый элемент множества B . Это число 12 , оно не является элементом множества D , поэтому, не является и элементом искомого пересечения. В итоге имеем A∩B∩D∩E={1, 2} .

Координатная прямая и числовые промежутки как объединение их частей

В нашем примере имеем записи

И

для пересечения и объединения числовых множеств соответственно.

Дальше изображают еще одну координатную прямую, ее удобно расположить под уже имеющимися. На ней будет изображаться искомое пересечение или объединение. На этой координатной прямой отмечают все граничные точки исходных числовых множеств. При этом эти точки сначала отмечают черточками, позже, когда будет выяснен характер точек с этими координатами, черточки будут заменены выколотыми или невыколотыми точками. В нашем случае это точки с координатами −3 и 7 .
Имеем

и

Точки, изображенные на нижней координатной прямой на предыдущем шаге алгоритма, позволяют рассматривать координатную прямую как набор числовых промежутков и точек, о чем мы говорили в . В нашем случае координатную прямую рассматриваем как набор следующих пяти числовых множеств: (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) .

И остается лишь по очереди проверить вхождение каждого из записанных множеств в искомое пересечение или объединение. Все сделанные выводы поэтапно отмечаются на нижней координатной прямой: если промежуток входит в пересечение или объединение, то над ним изображается штриховка, если точка входит в пересечение или объединение, то обозначающий ее штрих заменяем на сплошную точку, если не входит – то делаем ее выколотой. При этом следует придерживаться следующих правил:

  • промежуток включается в пересечение, если он одновременно включен и в множество A , и в множество B (другими словами, если есть штриховка над этим промежутком над обеими верхними координатными прямыми, отвечающими множествам A и B );
  • точка включается в пересечение, если она одновременно входит и в множество A , и в множество B (другими словами, если эта точка является невыколотой или внутренней точкой какого-либо интервала обеих числовых множеств A и B );
  • промежуток входит в объединение, если он входит хотя бы в одно из множеств A или B (иными словами, если есть штриховка над этим промежутком хотя бы над одной из координатных прямых, отвечающих множествам A и B );
  • точка входит в объединение, если она входит хотя бы в одно из множеств A или B (другими словами, если эта точка невыколотая или внутренняя точка какого-либо интервала хотя бы одного из множеств A и B ).

Проще говоря, пересечение числовых множеств A и B представляет собой объединение всех числовых промежутков множеств A и B , над которыми одновременно есть штриховка, и всех отдельных точек, принадлежащих одновременно и A , и B . А объединение двух числовых множеств есть объединение всех числовых промежутков, над которыми есть штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

Возвращаемся к нашему примеру. Закончим нахождение пересечения множеств. Для этого последовательно будем проверять множества (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) . Начинаем с (−∞, −3) , для наглядности выделим его на чертеже:

Этот промежуток не включаем в искомое пересечение, так как он не включен ни в A , ни в B (над этим промежутком нет штриховки). Так на этом шаге ничего на нашем чертеже не отмечаем и он сохраняет свой начальный вид:

Переходим к следующему множеству {−3} . Число −3 принадлежит множеству B (это невыколотая точка), но очевидно не принадлежит множеству A , поэтому не принадлежит и искомому пересечению. Поэтому на нижней координатной прямой делаем точку с координатой −3 выколотой:

Проверяем следующее множество (−3, 7) .

Оно входит в множество B (над этим интервалом есть штриховка), но не входит в множество A (над этим интервалом нет штриховки), поэтому, не будет входить и в пересечение. Следовательно, на нижней координатной прямой ничего не отмечаем:

Переходим к множеству {7} . Оно включено в множество B (точка с координатой 7 является внутренней точкой промежутка [−3, +∞)) , но не включено в множество A (эта точка выколотая), поэтому оно не будет включено и в искомое пересечение. Отмечаем точку с координатой 7 как выколотую:

Остается проверить промежуток (7, +∞) .

Он входит и в множество A , и в множество B (над этим промежутком есть штриховка), поэтому входит и в пересечение. Ставим штриховку над этим промежутком:

В результате на нижней координатной прямой мы получили изображение искомого пересечения множеств A=(7, +∞) и B=[−3, +∞) . Очевидно, оно представляет собой множество всех действительных чисел, больших семи, то есть, A∩B=(7, +∞) .

Теперь найдем объединение множеств A и B . Начинаем последовательную проверку множеств (−∞, −3) , {−3} , (−3, 7) , {7} , (7, +∞) на предмет их включения в искомое объединение двух числовых множеств A и B .

Первое множество (−∞, −3) не входит ни в A , ни в B (над этим промежутком нет штриховки), поэтому это множество не будет входить и в искомое объединение:

Множество {−3} входит в множество B , поэтому будет входить и в объединение множеств A и B :

Интервал (−3, 7) тоже входит в B (есть штриховка над этим интервалом), следовательно, он будет составной частью искомого объединения:

Множество {7} тоже будет входить в искомое объединение, так как оно входит в числовое множество B :

Наконец, (7, +∞) входит и в множество A , и в множество B , следовательно, будет входить и в искомое объединение:

По полученному изображению объединения множеств A и B заключаем, что A∩B=[−3, +∞) .

Получив некоторый практический опыт, проверку вхождения отдельных промежутков и чисел в состав пересечения или объединения можно будет проводить устно. Благодаря этому, Вы сможете очень быстро записывать результат. Покажем, как будет выглядеть решение примера, если не давать пояснения.

Пример.

Найдите пересечение и объединение множеств A=(−∞, −15)∪{−5}∪∪{12} и B=(−20, −10)∪{−5}∪(2, 3)∪{17} .

Решение.

Изобразим данные числовые множества на координатных прямых, это позволит нам получить изображения их пересечения и объединения:

Ответ:

A∩B=(−20, −15)∪{−5}∪(2, 3) и A∪B=(−∞, −10)∪{−5}∪∪{12, 17} .

Понятно, что при должном понимании озвученный выше алгоритм можно оптимизировать. Например, при нахождении пересечения множеств нет необходимости в проверке всех промежутков и множеств, состоящих их отдельных чисел, на которые разбивают координатную прямую граничные точки исходных множеств. Можно ограничиться проверкой лишь тех промежутков и чисел, которые составляют множество A или B . Остальные промежутки все равно не будут входить в пересечение, так как не принадлежат одному из исходных множеств. Проиллюстрируем сказанное, разобрав решение примера.

Пример.

Каково пересечение числовых множеств A={−2}∪(1, 5) и B=[−4, 3] ?

Решение.

Построим геометрические образы числовых множеств A и B :

Граничные точки заданных множеств разбивают числовую прямую на следующие множества: (−∞, −4) , {−4} , (−4, −2) , {−2} , (−2, 1) , {1} , (1, 3) , {3} , (3, 5) , {5} , (5, +∞) .

Несложно заметить, что числовое множество A можно «собрать» из только что записанных множеств, объединив {−2} , (1, 3) , {3} и (3, 5) . Для нахождения пересечения множеств A и B достаточно проверить, включены ли последние множества в множество B . Те из них, которые включены в B , и будут составлять искомое пересечение. Выполним соответствующую проверку.

Очевидно, {−2} входит в множество B (так как точка с координатой −2 является внутренней точкой отрезка [−4, 3]) . Интервал (1, 3) тоже входит в B (над ним есть штриховка). Множество {3} также входит в B (точка с координатой 3 является граничной и невыколотой множества B ). А интервал (3, 5) не входит в числовое множество B (над ним нет штриховки). Отметив сделанные выводы на чертеже, он примет такой вид

Таким образом, искомое пересечение двух исходных числовых множеств A и B представляет собой объединение следующих множеств {−2} , (1, 3) , {3} , которое можно записать как {−2}∪(1, 3] .

Ответ:

{−2}∪(1, 3] .

Остается лишь обговорить, как находить пересечение и объединение трех и большего количества числовых множеств. Эту задачу можно свести к последовательному нахождению пересечения и объединения двух множеств: сначала первого со вторым, дальше полученного результата с третьим, дальше полученного результата с четвертым и так далее. А можно использовать алгоритм, аналогичный уже озвученному. Единственное его отличие в том, что проверку вхождения промежутков и множеств, состоящих из отдельных чисел, нужно проводить не по двум, а по всем исходным множествам. Рассмотрим пример нахождения пересечения и объединения трех множеств.

Пример.

Найдите пересечение и объединение трех числовых множеств A=(−∞, 12] , B=(−3, 25] , D=(−∞, 25)∪{40} .

Решение.

Сначала, как обычно, изображаем числовые множества на координатных прямых, и ставим слева от них фигурную скобку, обозначающую пересечение, и квадратную скобку для объединения, а снизу изображаем координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Так координатная прямая оказывается представлена числовыми множествами (−∞, −3) , {−3} , (−3, 12) , {12} , (12, 25) , {25} , (25, 40) , {40} , (40, ∞) .

Начинаем поиск пересечения, для этого по очереди смотрим, входят ли записанные множества в каждое из множеств A , B и D . Во все три исходных числовых множества входит интервал (−3, 12) и множество {12} . Они и составляют искомое пересечение множеств A , B и D . Имеем A∩B∩D=(−3, 12] .

В свою очередь искомое объединение будут составлять множества (−∞, −3) (входит в A ), {−3} (входит в A ), (−3, 12) (входит в A ), {12} (входит в A ), (12, 25) (входит в B ), {25} (входит в B ) и {40} (входит в D ). Таким образом, A∪B∪D=(−∞, 25]∪{40} .

Ответ:

A∩B∩D=(−3, 12] , A∪B∪D=(−∞, 25]∪{40} .

В заключение заметим, что пересечение числовых множеств частенько является пустым множеством. Это отвечает случаям, когда исходные множества не имеют элементов, одновременно принадлежащих всем им.

(10, 27) , {27} , (27, +∞) . Ни одно из записанных множеств одновременно не входит в четыре исходных множества, а это означает, что пересечение множеств A , B , D и E есть пустое множеств.

Ответ:

A∩B∩D∩E=∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

2024 english-speak.ru. Изучение английского языка.