Как разложить примеры. Разложение чисел на простые множители, способы и примеры разложения. Примеры разложения многочленов на множители с помощью формул

Понятия "многочлен" и "разложение многочлена на множители" по алгебре встречаются очень часто, ведь их необходимо знать, чтобы с легкостью производить вычисления c большими многозначными числами. В этой статье будет описано несколько способов разложения. Все они достаточно просты в применении, стоит лишь правильно подобрать нужный в каждом конкретном случае.

Понятие многочлена

Многочлен является суммой одночленов, то есть выражений, содержащих только операцию умножения.

Например, 2 * x * y - это одночлен, а вот 2 * x * y + 25 - многочлен, который состоит из 2 одночленов: 2 * x * y и 25. Такие многочлены называет двучленами.

Иногда для удобства решения примеров с многозначными значениями выражение необходимо преобразовать, например, разложить на некоторое количество множителей, то есть чисел или выражений, между которыми производится действие умножения. Есть ряд способов разложения многочлена на множители. Стоит рассмотреть их начиная с самого примитивного, который применяют еще в начальных классах.

Группировка (запись в общем виде)

Формула разложения многочлена на множители способом группировки в общем виде выглядит таким образом:

ac + bd + bc + ad = (ac + bc) + (ad + bd)

Необходимо сгруппировать одночлены так, чтобы в каждой группе появился общий множитель. В первой скобке это множитель с, а во второй - d. Это нужно сделать для того, чтобы затем вынести его за скобку, тем самым упростив вычисления.

Алгоритм разложения на конкретном примере

Простейший пример разложения многочлена на множители способом группировки приведен ниже:

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b)

В первую скобку нужно взять слагаемые с множителем а, который и будет общим, а во вторую - со множителем b. Обратите внимание на знаки + и - в готовом выражении. Мы ставим перед одночленом тот знак, который был в начальном выражении. То есть нужно работать не с выражением 25а, а с выражением -25. Знак минус как бы «приклеить» к стоящему за ним выражению и всегда учитывать его при вычислениях.

На следующем шаге нужно вынести множитель, который является общим, за скобку. Именно для этого и делается группировка. Вынести за скобку - значит выписать перед скобкой (опуская знак умножения) все те множители, которые с точностью повторяются во всех слагаемых, которые находятся в скобке. Если в скобке не 2, а 3 слагаемых и больше, общий множитель должен содержаться в каждом из них, иначе его нельзя вынести за скобку.

В нашем случае - только по 2 слагаемых в скобках. Общий множитель сразу виден. В первой скобке - это а, во второй - b. Здесь нужно обратить внимание на цифровые коэффициенты. В первой скобке оба коэффициента (10 и 25) кратны 5. Это значит, что можно вынести за скобку не только а, но и 5а. Перед скобкой выписать 5а, а затем каждое из слагаемых в скобках поделить на общий множитель, который был вынесен, и также записать частное в скобках, не забывая о знаках + и - Со второй скобкой поступить также, вынести 7b, так как и 14 и 35 кратно 7.

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b) = 5а(2c - 5) + 7b(2c - 5).

Получилось 2 слагаемых: 5а(2c - 5) и 7b(2c - 5). Каждое из них содержит общий множитель (все выражение в скобках здесь совпадает, значит, является общим множителем): 2с - 5. Его тоже нужно вынести за скобку, то есть во второй скобке остаются слагаемые 5а и 7b:

5а(2c - 5) + 7b(2c - 5) = (2c - 5)*(5а + 7b).

Итак, полное выражение:

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b) = 5а(2c - 5) + 7b(2c - 5) = (2c - 5)*(5а + 7b).

Таким образом, многочлен 10ас + 14bc - 25a - 35b раскладываается на 2 множителя: (2c - 5) и (5а + 7b). Знак умножения между ними при записи можно опускать

Иногда встречаются выражения такого типа: 5а 2 + 50а 3 , здесь можно вынести за скобку не только а или 5а, а даже 5а 2 . Всегда нужно стараться вынести максимально большой общий множитель за скобку. В нашем случае, если разделить каждое слагаемое на общий множитель, то получается:

5а 2 / 5а 2 = 1; 50а 3 / 5а 2 = 10а (при вычислении частного нескольких степеней с равными основаниями основание сохраняется, а показатель степени вычитается). Таким образом, в скобке остается единица (ни в коем случае не забывайте писать единицу, если выносите за скобку целиком одно из слагаемых) и частное от деления: 10а. Получается, что:

5а 2 + 50а 3 = 5а 2 (1 + 10а)

Формулы квадратов

Для удобства вычислений были выведены несколько формул. Они называются формулами сокращенного умножения и используются довольно часто. Эти формулы помогают разложить на множители многочлены, содержащие степени. Это еще один действенный способ разложения на множители. Итак, вот они:

  • a 2 + 2ab + b 2 = (a + b) 2 - формула, получившая название "квадрат суммы", так как в результате разложения в квадрат берется сумма чисел, заключенная в скобки, то есть значение этой суммы умножается само на себя 2 раза, а значит, является множителем.
  • a 2 + 2ab - b 2 = (a - b) 2 - формула квадрата разности, она аналогична предыдущей. В результате получается разность, заключенная в скобки, содержащаяся в квадратной степени.
  • a 2 - b 2 = (a + b)(а - b) - это формула разности квадратов, так как изначально многочлен состоит из 2 квадратов чисел или выражений, между которыми производится вычитание. Пожалуй, из трех названных она используется чаще всего.

Примеры на вычисления по формулам квадратов

Вычисления по ним производятся достаточно просто. Например:

  1. 25x 2 + 20xy + 4y 2 - используем формулу "квадрат суммы".
  2. 25x 2 является квадратом выражения 5х. 20ху - удвоенное произведение 2*(5х*2у), а 4y 2 - это квадрат 2у.
  3. Таким образом, 25x 2 + 20xy + 4y 2 = (5x + 2у) 2 = (5x + 2у)(5x + 2у). Данный многочлен раскладывается на 2 множителя (множители одинаковые, поэтому записывается в виде выражения с квадратной степенью).

Действия по формуле квадрата разности производятся аналогично этим. Остается формула разность квадратов. Примеры на эту формулу очень легко определить и найти среди других выражений. Например:

  • 25а 2 - 400 = (5а - 20)(5а + 20). Так как 25а 2 = (5а) 2 , а 400 = 20 2
  • 36х 2 - 25у 2 = (6х - 5у) (6х + 5у). Так как 36х 2 = (6х) 2 , а 25у 2 = (5у 2)
  • с 2 - 169b 2 = (с - 13b)(c + 13b). Так как 169b 2 = (13b) 2

Важно, чтобы каждое из слагаемых являлось квадратом какого-либо выражения. Тогда этот многочлен подлежит разложению на множители по формуле разности квадратов. Для этого не обязательно, чтобы над числом стояла именно вторая степень. Встречаются многочлены, содежащие большие степени, но все равно подходящие к этим формулам.

a 8 +10a 4 +25 = (a 4) 2 + 2*a 4 *5 + 5 2 = (a 4 +5) 2

В данном примере а 8 можно представить как (a 4) 2 , то есть квадрат некого выражения. 25 - это 5 2 , а 10а 4 - это удвоенное произведениеслагаемых2*a 4 *5. То есть данное выражение, несмотря на наличие степеней с большими показателями, можно разложить на 2 множителя, чтобы в последствии работать с ними.

Формулы кубов

Такие же формулы существуют для разложения на множители многочленов, содержащих кубы. Они немного посложнее тех, что с квадратами:

  • a 3 + b 3 = (а + b)(a 2 - ab + b 2) - эту формулу называют суммой кубов, так как в начальном виде многочлен представляет собой сумму двух выражений или чисел, заключенных в куб.
  • a 3 - b 3 = (а - b)(a 2 + ab + b 2) - формула, идентичная предыдущей, обозначена как разность кубов.
  • a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b) 3 - куб суммы, в результате вычислений получается сумма чисел или выражений, заключенная в скобки и умноженная сама на себя 3 раза, то есть находящаяся в кубе
  • a 3 - 3a 2 b + 3ab 2 - b 3 = (a - b) 3 - формула, составленная по аналогии предыдущей с изменением лишь некоторых знаков математических операций (плюс и минус), имеет название "куб разности".

Последние две формулы практически не испольуются с целью разложения многочлена на множители, так как они сложны, и достаточно редко встречаются многочлены, полностью соответствующие именно такому строению, чтобы их можно было разложить по этим формулам. Но их все равно нужно знать, так как они потребуются при действиях в обратном направлении - при раскрытии скобок.

Примеры на формулы кубов

Рассмотрим пример: 64a 3 − 8b 3 = (4a) 3 − (2b) 3 = (4a − 2b)((4a) 2 + 4a*2b + (2b) 2) = (4a−2b)(16a 2 + 8ab + 4b 2).

Здесь взяты достаточно простые числа, поэтому сразу можно увидеть, что 64а 3 - это (4а) 3 , а 8b 3 - это (2b) 3 . Таким образом, этот многочлен раскладывается по формуле разность кубов на 2 множителя. Действия по формуле суммы кубов производятся по аналогии.

Важно понимать, что далеко не все многочлены подлежат разложению хотя бы одним из способов. Но есть такие выражения, которые содержат большие степени, чем квадрат или куб, но их также можно разложить по формуам сокращенного умножения. Например: x 12 + 125y 3 =(x 4) 3 +(5y) 3 =(x 4 +5y)*((x 4) 2 − x 4 *5y+(5y) 2)=(x 4 + 5y)(x 8 − 5x 4 y + 25y 2).

В этом примере содержится аж 12 степень. Но даже его возможно разложить на множители по формуле суммы кубов. Для этого нужно представить х 12 как (x 4) 3 , то есть как куб какого-либо выражения. Теперь в формулу вместо а нужно подставлять именно его. Ну а выражение 125у 3 - это куб 5у. Далее следует составить произведение по формуле и произвести вычисления.

На первых порах или в случае возникших сомнений, вы всегда можете произвести проверку обратным умножением. Вам нужно лишь раскрыть скобки в получившемся выражении и выполнить действия с подобными слагаемыми. Этот метод относится ко всем перечисленным способам сокращения: как к работе с общим множителем и группировке, так и к действиям по формулам кубов и квадратных степеней.

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению. Разложение на множители является полезным навыком для решения основных алгебраических задач, и становится практически необходимым при работе с квадратными уравнениями и другими многочленами. Разложение на множители используется для упрощения алгебраических уравнений, чтобы облегчить их решение. Разложение на множители может помочь вам исключить определенные возможные ответы быстрее, чем вы это сделаете, решая уравнение вручную.

Шаги

Разложение на множители чисел и основных алгебраических выражений

  1. Разложение на множители чисел. Концепция разложения на множители проста, но на практике разложение на множители может оказаться непростой задачей (если дано сложное уравнение). Поэтому для начала рассмотрим концепцию разложения на множители на примере чисел, продолжим с простыми уравнениями, а затем перейдем к сложным уравнениям. Множители данного числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 12 являются числа: 1, 12, 2, 6, 3, 4, так как 1*12=12, 2*6=12, 3*4=12.

    • Аналогично, вы можете рассматривать множители числа как его делители, то есть числа, на которые делится данное число.
    • Найдите все множители числа 60. Мы часто используем число 60 (например, 60 минут в часе, 60 секунд в минуте и т.д.) и у этого числа довольно большое количество множителей.
      • Множители 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60.
  2. Запомните: члены выражения, содержащие коэффициент (число) и переменную, также могут быть разложены на множители. Для этого найдите множители коэффициента при переменной. Зная, как разложить на множители члены уравнений, можно легко упростить данное уравнение.

    • Например, член 12x может быть записан в виде произведения 12 и х. Вы также можете записать 12x как 3(4x), 2(6x) и т.д., разложив число 12 на наиболее подходящие вам множители.
      • Вы можете раскладывать 12x несколько раз подряд. Другими словами, вы не должны останавливаться на 3(4x) или 2(6x); продолжите разложение: 3(2(2x)) или 2(3(2x)) (очевидно, что 3(4x)=3(2(2x)) и т.д.)
  3. Примените распределительное свойство умножения для разложения на множители алгебраических уравнений. Зная, как разложить на множители числа и члены выражения (коэффициенты с переменными), вы можете упростить несложные алгебраические уравнения, найдя общий множитель числа и члена выражения. Обычно для упрощения уравнения необходимо найти наибольший общий делитель (НОД). Такое упрощение возможно благодаря распределительному свойству умножения: для любых чисел а, b, с верно равенство a(b+c) = ab+ac.

    • Пример. Разложите на множители уравнение 12х + 6. Во-первых, найдите НОД 12x и 6. 6 является наибольшим числом, которое делит и 12x, и 6, поэтому вы можете разложить данное уравнение на: 6(2x+1).
    • Этот процесс также верен для уравнений, в которых есть отрицательные и дробные члены. Например, х/2+4 может быть разложено на 1/2(х+8); например, -7x+(-21) может быть разложено на -7(х+3).

    Разложение на множители квадратных уравнений

    1. Убедитесь, что уравнение дано в квадратичной форме (ax 2 + bx + c = 0). Квадратные уравнения имеют вид: ax 2 + bx + c = 0, где а, b, с - числовые коэффициенты отличные от 0. Если вам дано уравнение с одной переменной (х) и в этом уравнении есть один или несколько членов с переменной второго порядка, вы можете перенести все члены уравнения на одну сторону уравнения и приравнять его к нулю.

      • Например, дано уравнение: 5x 2 + 7x - 9 = 4x 2 + x – 18. Оно может быть преобразовано в уравнение x 2 + 6x + 9 = 0, которое является квадратным уравнением.
      • Уравнения с переменной х больших порядков, например, x 3 , x 4 и т.д. не являются квадратными уравнениями. Это кубические уравнения, уравнения четвертого порядка и так далее (только если такие уравнения не могут быть упрощены до квадратных уравнений с переменной х в степени 2).
    2. Квадратные уравнения, где а = 1, раскладываются на (x+d)(x+e), где d*е=с и d+е=b. Если данное вам квадратное уравнение имеет вид: x 2 + bx + c = 0 (то есть коэффициент при x 2 равен 1), то такое уравнение можно (но не гарантированно) разложить на вышеуказанные множители. Для этого нужно найти два числа, которые при перемножении дают «с», а при сложении – «b». Как только вы найдете такие два числа (d и е), подставьте их в следующее выражение: (x+d)(x+e), которое при раскрытии скобок приводит к исходному уравнению.

      • Например, дано квадратное уравнение x 2 + 5x + 6 = 0. 3*2=6 и 3+2=5, поэтому вы можете разложить данное уравнение на (х+3)(х+2).
      • В случае отрицательных членов внесите следующие незначительные изменения в процесс разложения на множители:
        • Если квадратное уравнение имеет вид x 2 -bx+c, то оно раскладывается на: (х-_)(х-_).
        • Если квадратное уравнение имеет вид x 2 -bx-c, то оно раскладывается на: (х+_)(х-_).
      • Примечание: пробелы могут быть заменены на дроби или десятичные числа. Например, уравнение x 2 + (21/2)x + 5 = 0 раскладывается на (х+10)(х+1/2).
    3. Разложение на множители методом проб и ошибок. Несложные квадратные уравнения можно разложить на множители, просто подставляя числа в возможные решения до тех пор, пока вы не найдете правильного решения. Если уравнение имеет вид ax 2 +bx+c, где a>1, возможные решения записываются в виде (dx +/- _)(ex +/- _), где d и е - числовые коэффициенты отличные от нуля, которые при перемножении дают а. Либо d, либо e (или оба коэффициента) могут быть равны 1. Если оба коэффициента равны 1, то воспользуйтесь способом, описанным выше.

      • Например, дано уравнение 3x 2 - 8x + 4. Здесь 3 имеет только два множителя (3 и 1), поэтому возможные решения записываются в виде (3x +/- _)(х +/- _). В этом случае, подставив вместо пробелов -2, вы найдете правильный ответ: -2*3x=-6x и -2*х=-2x; - 6x+(-2x)=-8x и -2*-2=4, то есть такое разложение при раскрытии скобок приведет к членам исходного уравнения.

(кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами . Числа, имеющие другие делители, называются составными (или сложными ) числами . Простых чисел - бесконечное множество. Ниже приведены простые числа, не превосходящие 200:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,

47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,

103, 107, 109, 113, 127, 131, 137, 139, 149, 151,

157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Умножение — одно из четырёх основных арифметических действий, бинарная математическая операция, в которой один аргумент складывается столько раз, сколько показывает другой. В арифметике под умножением понимают краткую запись сложения указанного количества одинаковых слагаемых.

Например , запись 5*3 обозначает «сложить три пятёрки», то есть 5+5+5. Результат умножения называется произведением , а умножаемые числа — множителями или сомножителями . Первый множитель иногда называется «множимое ».

Всякое составное число можно разложить на простые множители. При любом способе получается одно и то же разложение, если не учитывать порядка записи множителей.

Разложение числа на множители (Факторизация).

Разложение на множители (факторизация) - перебор делителей — алгоритм факторизации или тестирования простоты числа путем полного перебора всех возможных потенциальных делителей.

Т.е., простым языком, факторизация - это название процесса разложения чисел на множители, выраженное научным языком.

Последовательность действий при разложении на простые множители:

1. Проверяем, не является ли предложенное число простым.

2. Если нет, то подбираем, руководствуясь признаками деления делитель, из простых чисел начиная с наименьшего (2, 3, 5 …).

3. Повторяем это действие до тех пор, пока частное не окажется простым числом.

Что значит разложить на простые множители? Как это сделать? Что можно узнать по разложению числа на простые множители? Ответы на эти вопросы иллюстрируются конкретными примерами.

Определения:

Простым называют число, которое имеет ровно два различных делителя.

Составным называют число, которое имеет более двух делителей.

Разложить натуральное число на множители - значит представить его в виде произведения натуральных чисел.

Разложить натуральное число на простые множители - значит представить его в виде произведения простых чисел.

Замечания:

  • В разложении простого числа один из множителей равен единице, а другой - самому этому числу.
  • Говорить о разложении единицы на множители не имеет смысла.
  • Составное число можно разложить на множители, каждый из которых отличен от 1.

Разложим число 150 на множители. Например, 150 - это 15 умножить на 10.

15 - это составное число. Его можно разложить на простые множители 5 и 3.

10 - это составное число. Его можно разложить на простые множители 5 и 2.

Записав вместо 15 и 10 их разложения на простые множители, мы получили разложение числа 150.

Число 150 можно по-другому разложить на множители. Например, 150 - это произведение чисел 5 и 30.

5 - число простое.

30 - это число составное. Его можно представить как произведение 10 и 3.

10 - число составное. Его можно разложить на простые множители 5 и 2.

Мы получили разложение числа 150 на простые множители другим способом.

Заметим, что первое и второе разложение одинаковы. Они отличаются только порядком следования множителей.

Принято записывать множители в порядке возрастания.

Всякое составное число можно разложить на простые множители единственным образом с точностью до порядка множителей.

При разложении больших чисел на простые множители используют запись в столбик:

Наименьшее простое число, на которое делится 216 - это 2.

Разделим 216 на 2. Получим 108.

Полученное число 108 делится на 2.

Выполним деление. Получим в результате 54.

Согласно признаку делимости на 2 число 54 делится на 2.

Выполнив деление, получим 27.

Число 27 заканчивается на нечетную цифру 7 . Оно

Не делится на 2. Следующее простое число - это 3.

Разделим 27 на 3. Получим 9. Наименьшее простое

Число, на которое делится 9, - это 3. Три - само является простым числом, оно делится на себя и на единицу. Разделим 3 на себя. В итоге мы получили 1.

  • Число делится лишь на те простые числа, которые входят в состав его разложения.
  • Число делится лишь на те составные числа, разложение которых на простые множители полностью в нем содержится.

Рассмотрим примеры:

4900 делится на простые числа 2, 5 и 7. (они входят в разложение числа 4900), но не делится, например, на 13.

11 550 75. Это так, потому что разложение числа 75 полностью содержится в разложении числа 11550.

В результате деления будет произведение множителей 2, 7 и 11.

11550 не делится на 4 потому, что в разложении четырех есть лишняя двойка.

Найти частное от деления числа a на число b, если эти числа раскладываются на простые множители следующим образом a=2∙2∙2∙3∙3∙3∙5∙5∙19; b=2∙2∙3∙3∙5∙19

Разложение числа b полностью содержится в разложении числа a.

Результат деления a на b - это произведение оставшихся в разложении числа a трех чисел.

Итак, ответ: 30.

Список литературы

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия. 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. - М.: Просвещение, Библиотека учителя математики, 1989.
  1. Интернет-портал Matematika-na.ru ().
  2. Интернет-портал Math-portal.ru ().

Домашнее задание

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. - М.: Мнемозина, 2012. № 127, № 129, № 141.
  2. Другие задания: № 133, № 144.

Любое составное число можно разложить на простые множители. Способов разложения может быть несколько. При любом способе получается один и тот же результат.

Как разложить число на простые множители наиболее удобным способом? Рассмотрим, как это лучше сделать, на конкретных примерах.

Примеры. 1) Разложить число 1400 на простые множители.

1400 делится на 2. 2 — простое число, раскладывать его на множители не нужно. Получаем 700. Делим его на 2. Получаем 350. 350 тоже делим на 2. Полученное число 175 можно разделить на 5. Результат — з5 — еще раз делим на 5. Итого — 7. Его можно разделить только на 7. Получили 1, деление окончено.

Это же число можно разложить на простые множители иначе:

1400 удобно разделить на 10. 10 не является простым числом, поэтому его нужно разложить на простые множители: 10=2∙5. Результат — 140. Его снова делим на 10=2∙5. Получаем 14. Если 14 разделить на 14, то его тоже следует разложить на произведение простых множителей: 14=2∙7.

Таким образом, снова пришли к такому же, как и в первом случае, разложению, но быстрее.

Вывод: не обязательно при разложении числа делить его только на простые делители. Делим на то, что удобнее, например, на 10. Надо только составные делители не забыть разложить на простые множители.

2) Разложить число 1620 на простые множители.

Число 1620 удобнее всего разделить на 10. Поскольку 10 простым числом не является, представляем его в виде произведения простых множителей: 10=2∙5. Получили 162. Его удобно разделить на 2. Результат — 81. Число 81 можно разделить на 3, но на 9 — удобнее. Так как 9 — не простое число, раскладываем его как 9=3∙3. Получили 9. Его также делим на 9 и раскладываем на произведение простых множителей.

2024 english-speak.ru. Изучение английского языка.