Сокращение дробей с иксами. Онлайн калькулятор сокращения алгебраических дробей с подробным решением позволяет сократить дробь и перевести неправильную дробь в правильную дробь. Перевод алгебраической дроби в десятичную дробь

Когда ученик переходит в старшую школу, математика разделяется на 2 предмета: алгебру и геометрию. Понятий становится все больше, задания все сложнее. У некоторых возникают трудности с восприятием дробей. Пропустили первый урок по этой теме, и вуаля. дроби? Вопрос, который будет мучить на протяжении всей школьной жизни.

Понятие алгебраической дроби

Начнем с определения. Под алгебраической дробью понимается выражения P/Q, где P является числителем, а Q - знаменателем. Под буквенной записью может скрываться число, числовое выражение, численно-буквенное выражение.

Прежде чем задаваться вопросом, как решать алгебраические дроби, для начала нужно понимать, что подобное выражение - часть целого.

Как правило, целое - это 1. Число в знаменателе показывает, на сколько частей разделили единицу. Числитель необходим для того, чтобы узнать, сколько элементов взято. Дробная черта соответствует знаку деления. Допускается запись дробного выражения в качестве математической операции «Деление». В таком случае числитель - делимое, знаменатель - делитель.

Основное правило обыкновенных дробей

Когда учащиеся проходят данную тему в школе, им дают примеры на закрепление. Чтобы правильно их решать и находить различные пути из сложных ситуаций, нужно применять основное свойство дробей.

Оно звучит так: Если умножить и числитель, и знаменатель на одно и то же число или выражение (отличные от нуля), то значение обыкновенной дроби не изменится. Частным случаем от данного правила является разделение обеих частей выражения на одно и то же число или многочлен. Подобные преобразования называются тождественными равенствами.

Ниже будет рассмотрено, как решать сложение и вычитание алгебраических дробей, производить умножение, деление и сокращение дробей.

Математические операции с дробями

Рассмотрим, как решать, основное свойство алгебраической дроби, как применять его на практике. Если нужно перемножить две дроби, сложить их, разделить одну на другую или произвести вычитание, нужно всегда придерживаться правил.

Так, для операции сложения и вычитания следует найти дополнительный множитель, чтобы привести выражения к общему знаменателю. Если изначально дроби даны с одинаковыми выражениями Q, то нужно опустить этот пункт. Когда общий знаменатель найден, как решать алгебраические дроби? Нужно сложить или вычесть числители. Но! Нужно помнить, что при наличии знака «-» перед дробью все знаки в числителе меняются на противоположные. Иногда не следует производить каких-либо подстановок и математических операций. Достаточно поменять знак перед дробью.

Часто используется такое понятие, как сокращение дробей . Это означает следующее: если числитель и знаменатель разделить на отличное от единицы выражение (одинаковое для обеих частей), то получается новая дробь. Делимое и делитель меньше прежних, но в силу основного правила дробей остаются равными изначальному примеру.

Целью этой операции является получение нового несократимого выражения. Решить данную задачу можно, если сократить числитель и знаменатель на наибольший общий делитель. Алгоритм операции состоит из двух пунктов:

  1. Нахождение НОД для обеих частей дроби.
  2. Деление числителя и знаменателя на найденное выражение и получение несократимой дроби, равной предшествующей.

Ниже показана таблица, в которой расписаны формулы. Для удобства ее можно распечатать и носить с собой в тетради. Однако, чтобы в будущем при решении контрольной или экзамена не возникло трудностей в вопросе, как решать алгебраические дроби, указанные формулы нужно выучить наизусть.

Несколько примеров с решениями

С теоретической точки зрения рассмотрен вопрос, как решать алгебраические дроби. Примеры, приведенные в статье, помогут лучше усвоить материал.

1. Преобразовать дроби и привести их к общему знаменателю.

2. Преобразовать дроби и привести их к общему знаменателю.

После изучения теоретической части и расссмотрения практической вопросов больше возникнуть не должно.

Данная статья продолжает тему преобразования алгебраических дробей: рассмотрим такое действие как сокращение алгебраических дробей. Дадим определение самому термину, сформулируем правило сокращения и разберем практические примеры.

Yandex.RTB R-A-339285-1

Смысл сокращения алгебраической дроби

В материалах об обыкновенной дроби мы рассматривали ее сокращение. Мы определили сокращение обыкновенной дроби как деление ее числителя и знаменателя на общий множитель.

Сокращение алгебраической дроби представляет собой аналогичное действие.

Определение 1

Сокращение алгебраической дроби – это деление ее числителя и знаменателя на общий множитель. При этом, в отличие от сокращения обыкновенной дроби (общим знаменателем может быть только число), общим множителем числителя и знаменателя алгебраической дроби может служить многочлен, в частности, одночлен или число.

К примеру, алгебраическая дробь 3 · x 2 + 6 · x · y 6 · x 3 · y + 12 · x 2 · y 2 может быть сокращена на число 3 , в итоге получим: x 2 + 2 · x · y 6 · x 3 · y + 12 · x 2 · y 2 . Эту же дробь мы можем сократить на переменную х, и это даст нам выражение 3 · x + 6 · y 6 · x 2 · y + 12 · x · y 2 . Также заданную дробь возможно сократить на одночлен 3 · x или любой из многочленов x + 2 · y , 3 · x + 6 · y , x 2 + 2 · x · y или 3 · x 2 + 6 · x · y .

Конечной целью сокращения алгебраической дроби является дробь более простого вида, в лучшем случае – несократимая дробь.

Все ли алгебраические дроби подлежат сокращению?

Опять же из материалов об обыкновенных дробях мы знаем, что существуют сократимые и несократимые дроби. Несократимые – это дроби, не имеющие общих множителей числителя и знаменателя, отличных от 1 .

С алгебраическими дробями все так же: они могут иметь общие множители числителя и знаменателя, могут и не иметь. Наличие общих множителей позволяет упростить исходную дробь посредством сокращения. Когда общих множителей нет, оптимизировать заданную дробь способом сокращения невозможно.

В общих случаях по заданному виду дроби довольно сложно понять, подлежит ли она сокращению. Конечно, в некоторых случаях наличие общего множителя числителя и знаменателя очевидно. Например, в алгебраической дроби 3 · x 2 3 · y совершенно понятно, что общим множителем является число 3 .

В дроби - x · y 5 · x · y · z 3 также мы сразу понимаем, что сократить ее возможно на х, или y , или на х · y . И все же гораздо чаще встречаются примеры алгебраических дробей, когда общий множитель числителя и знаменателя не так просто увидеть, а еще чаще – он попросту отсутствует.

Например, дробь x 3 - 1 x 2 - 1 мы можем сократить на х - 1 , при этом указанный общий множитель в записи отсутствует. А вот дробь x 3 - x 2 + x - 1 x 3 + x 2 + 4 · x + 4 подвергнуть действию сокращения невозможно, поскольку числитель и знаменатель не имеют общего множителя.

Таким образом, вопрос выяснения сократимости алгебраической дроби не так прост, и зачастую проще работать с дробью заданного вида, чем пытаться выяснить, сократима ли она. При этом имеют место такие преобразования, которые в частных случаях позволяют определить общий множитель числителя и знаменателя или сделать вывод о несократимости дроби. Разберем детально этот вопрос в следующем пункте статьи.

Правило сокращения алгебраических дробей

Правило сокращения алгебраических дробей состоит из двух последовательных действий:

  • нахождение общих множителей числителя и знаменателя;
  • в случае нахождения таковых осуществление непосредственно действия сокращения дроби.

Самым удобным методом отыскания общих знаменателей является разложение на множители многочленов, имеющихся в числителе и знаменателе заданной алгебраической дроби. Это позволяет сразу наглядно увидеть наличие или отсутствие общих множителей.

Само действие сокращения алгебраической дроби базируется на основном свойстве алгебраической дроби, выражаемой равенством undefined , где a , b , c – некие многочлены, причем b и c – ненулевые. Первым шагом дробь приводится к виду a · c b · c , в котором мы сразу замечаем общий множитель c . Вторым шагом – выполняем сокращение, т.е. переход к дроби вида a b .

Характерные примеры

Несмотря на некоторую очевидность, уточним про частный случай, когда числитель и знаменатель алгебраической дроби равны. Подобные дроби тождественно равны 1 на всей ОДЗ переменных этой дроби:

5 5 = 1 ; - 2 3 - 2 3 = 1 ; x x = 1 ; - 3 , 2 · x 3 - 3 , 2 · x 3 = 1 ; 1 2 · x - x 2 · y 1 2 · x - x 2 · y ;

Поскольку обыкновенные дроби являются частным случаем алгебраических дробей, напомним, как осуществляется их сокращение. Натуральные числа, записанные в числителе и знаменателе, раскладываются на простые множители, затем общие множители сокращаются (если таковые имеются).

К примеру, 24 1260 = 2 · 2 · 2 · 3 2 · 2 · 3 · 3 · 5 · 7 = 2 3 · 5 · 7 = 2 105

Произведение простых одинаковых множителей возможно записать как степени, и в процессе сокращения дроби использовать свойство деления степеней с одинаковыми основаниями. Тогда вышеуказанное решение было бы таким:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 - 2 3 2 - 1 · 5 · 7 = 2 105

(числитель и знаменатель разделены на общий множитель 2 2 · 3 ). Или для наглядности, опираясь на свойства умножения и деления, решению дадим такой вид:

24 1260 = 2 3 · 3 2 2 · 3 2 · 5 · 7 = 2 3 2 2 · 3 3 2 · 1 5 · 7 = 2 1 · 1 3 · 1 35 = 2 105

По аналогии осуществляется сокращение алгебраических дробей, у которых в числителе и знаменателе имеются одночлены с целыми коэффициентами.

Пример 1

Задана алгебраическая дробь - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z . Необходимо произвести ее сокращение.

Решение

Возможно записать числитель и знаменатель заданной дроби как произведение простых множителей и переменных, после чего осуществить сокращение:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 · 3 · 3 · a · a · a · a · a · b · b · c · z 2 · 3 · a · a · b · b · c · c · c · c · c · c · c · z = = - 3 · 3 · a · a · a 2 · c · c · c · c · c · c = - 9 · a 3 2 · c 6

Однако, более рациональным способом будет запись решения в виде выражения со степенями:

27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 3 3 · a 5 · b 2 · c · z 2 · 3 · a 2 · b 2 · c 7 · z = - 3 3 2 · 3 · a 5 a 2 · b 2 b 2 · c c 7 · z z = = - 3 3 - 1 2 · a 5 - 2 1 · 1 · 1 c 7 - 1 · 1 = · - 3 2 · a 3 2 · c 6 = · - 9 · a 3 2 · c 6 .

Ответ: - 27 · a 5 · b 2 · c · z 6 · a 2 · b 2 · c 7 · z = - 9 · a 3 2 · c 6

Когда в числителе и знаменателе алгебраической дроби имеются дробные числовые коэффициенты, возможно два пути дальнейших действий: или отдельно осуществить деление этих дробных коэффициентов, или предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на некое натуральное число. Последнее преобразование проводится в силу основного свойства алгебраической дроби (про него можно почитать в статье «Приведение алгебраической дроби к новому знаменателю»).

Пример 2

Задана дробь 2 5 · x 0 , 3 · x 3 . Необходимо выполнить ее сокращение.

Решение

Возможно сократить дробь таким образом:

2 5 · x 0 , 3 · x 3 = 2 5 3 10 · x x 3 = 4 3 · 1 x 2 = 4 3 · x 2

Попробуем решить задачу иначе, предварительно избавившись от дробных коэффициентов – умножим числитель и знаменатель на наименьшее общее кратное знаменателей этих коэффициентов, т.е. на НОК (5 , 10) = 10 . Тогда получим:

2 5 · x 0 , 3 · x 3 = 10 · 2 5 · x 10 · 0 , 3 · x 3 = 4 · x 3 · x 3 = 4 3 · x 2 .

Ответ: 2 5 · x 0 , 3 · x 3 = 4 3 · x 2

Когда мы сокращаем алгебраические дроби общего вида, в которых числители и знаменатели могут быть как одночленами, так и многочленами, возможна проблема, когда общий множитель не всегда сразу виден. Или более того, он попросту не существует. Тогда для определения общего множителя или фиксации факта о его отсутствии числитель и знаменатель алгебраической дроби раскладывают на множители.

Пример 3

Задана рациональная дробь 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 . Необходимо ее сократить.

Решение

Разложим на множители многочлены в числителе и знаменателе. Осуществим вынесение за скобки:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49)

Мы видим, что выражение в скобках возможно преобразовать с использованием формул сокращенного умножения:

2 · b 2 · (a 2 + 14 · a + 49) b 3 · (a 2 - 49) = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7)

Хорошо заметно, что возможно сократить дробь на общий множитель b 2 · (a + 7) . Произведем сокращение:

2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Краткое решение без пояснений запишем как цепочку равенств:

2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · b 2 · (a 2 + 14 a + 49) b 3 · (a 2 - 49) = = 2 · b 2 · (a + 7) 2 b 3 · (a - 7) · (a + 7) = 2 · (a + 7) b · (a - 7) = 2 · a + 14 a · b - 7 · b

Ответ: 2 · a 2 · b 2 + 28 · a · b 2 + 98 · b 2 a 2 · b 3 - 49 · b 3 = 2 · a + 14 a · b - 7 · b .

Случается, что общие множители скрыты числовыми коэффициентами. Тогда при сокращении дробей оптимально числовые множители при старших степенях числителя и знаменателя вынести за скобки.

Пример 4

Дана алгебраическая дробь 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 . Необходимо осуществить ее сокращение, если это возможно.

Решение

На первый взгляд у числителя и знаменателя не существует общего знаменателя. Однако, попробуем преобразовать заданную дробь. Вынесем за скобки множитель х в числителе:

1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2

Теперь видна некая схожесть выражения в скобках и выражения в знаменателе за счет x 2 · y . Вынесем за скобку числовые коэффициенты при старших степенях этих многочленов:

x · 1 5 - 2 7 · x 2 · y 5 · x 2 · y - 3 1 2 = x · - 2 7 · - 7 2 · 1 5 + x 2 · y 5 · x 2 · y - 1 5 · 3 1 2 = = - 2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10

Теперь становится виден общий множитель, осуществляем сокращение:

2 7 · x · - 7 10 + x 2 · y 5 · x 2 · y - 7 10 = - 2 7 · x 5 = - 2 35 · x

Ответ: 1 5 · x - 2 7 · x 3 · y 5 · x 2 · y - 3 1 2 = - 2 35 · x .

Сделаем акцент на том, что навык сокращения рациональных дробей зависит от умения раскладывать многочлены на множители.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

В этой статье мы подробно остановимся на сокращении алгебраических дробей . Сначала разберемся, что понимают под термином «сокращение алгебраической дроби», и выясним, всегда ли алгебраическая дробь сократима. Дальше приведем правило, позволяющее проводить это преобразование. Наконец, рассмотрим решения характерных примеров, которые позволят уяснить все тонкости процесса.

Навигация по странице.

Что значит сократить алгебраическую дробь?

Изучая , мы говорили про их сокращение. мы назвали деление ее числителя и знаменателя на общий множитель. Например, обыкновенную дробь 30/54 можно сократить на 6 (то есть, разделить на 6 ее числитель и знаменатель), что приведет нас к дроби 5/9 .

Под сокращением алгебраической дроби понимают аналогичное действие. Сократить алгебраическую дробь – это значит разделить ее числитель и знаменатель на общий множитель. Но если общим множителем числителя и знаменателя обыкновенной дроби может быть только число, то общим множителем числителя и знаменателя алгебраической дроби может быть многочлен , в частности, одночлен или число.

Например, алгебраическую дробь можно сократить на число 3 , что даст дробь . Также можно выполнить сокращение на переменную x , что приведет к выражению . Исходную алгебраическую дробь можно подвергнуть сокращению на одночлен 3·x , а также на любой из многочленов x+2·y , 3·x+6·y , x 2 +2·x·y или 3·x 2 +6·x·y .

Конечная цель сокращения алгебраической дроби состоит в получении дроби более простого вида, в лучшем случае – несократимой дроби.

Любая ли алгебраическая дробь подлежит сокращению?

Нам известно, что обыкновенные дроби подразделяются на . Несократимые дроби не имеют отличных от единицы общих множителей в числителе и знаменателе, следовательно, не подлежат сокращению.

Алгебраические дроби также могут иметь общие множители числителя и знаменателя, а могут и не иметь. При наличии общих множителей возможно сокращение алгебраической дроби. Если же общих множителей нет, то упрощение алгебраической дроби посредством ее сокращения невозможно.

В общем случае по внешнему виду алгебраической дроби достаточно сложно определить, возможно ли выполнить ее сокращение. Несомненно, в некоторых случаях общие множители числителя и знаменателя очевидны. Например, хорошо видно, что числитель и знаменатель алгебраической дроби имеют общий множитель 3 . Также несложно заметить, что алгебраическую дробь можно сократить на x , на y или сразу на x·y . Но намного чаще общего множителя числителя и знаменателя алгебраической дроби сразу не видно, а еще чаще – его просто нет. К примеру, дробь возможно сократить на x−1 , но этот общий множитель явно не присутствует в записи. А алгебраическую дробь сократить невозможно, так как ее числитель и знаменатель не имеют общих множителей.

Вообще, вопрос о сократимости алгебраической дроби очень непростой. И порой проще решить задачу, работая с алгебраической дробью в исходном виде, чем выяснить, можно ли эту дробь предварительно сократить. Но все же существуют преобразования, которые в некоторых случаях позволяют с относительно небольшими усилиями найти общие множители числителя и знаменателя, если таковые имеются, либо сделать вывод о несократимости исходной алгебраической дроби. Эта информация будет раскрыта в следующем пункте.

Правило сокращения алгебраических дробей

Информация предыдущих пунктов позволяет естественным образом воспринять следующее правило сокращения алгебраических дробей , которое состоит из двух шагов:

  • сначала находятся общие множители числителя и знаменателя исходной дроби;
  • если таковые имеются, то проводится сокращение на эти множители.

Указанные шаги озвученного правила нуждаются в разъяснении.

Самый удобный способ отыскания общих заключается в разложении на множители многочленов , находящихся в числителе и знаменателе исходной алгебраической дроби. При этом сразу становятся видны общие множители числителя и знаменателя, либо становится видно, что общих множителей нет.

Если общих множителей нет, то можно делать вывод о несократимости алгебраической дроби. Если же общие множители обнаружены, то на втором шаге они сокращаются. В результате получается новая дробь более простого вида.

В основе правила сокращения алгебраических дробей лежит основное свойство алгебраической дроби , которое выражается равенством , где a , b и c – некоторые многочлены, причем b и c – ненулевые. На первом шаге исходная алгебраическая дробь приводится к виду , из которого становится виден общий множитель c , а на втором шаге выполняется сокращение – переход к дроби .

Переходим к решению примеров с использованием данного правила. На них мы и разберем все возможные нюансы, возникающие при разложении числителя и знаменателя алгебраической дроби на множители и последующем сокращении.

Характерные примеры

Для начала нужно сказать про сокращение алгебраических дробей, числитель и знаменатель которых одинаковые. Такие дроби тождественно равны единице на всей ОДЗ входящих в нее переменных, например,
и т.п.

Теперь не помешает вспомнить, как выполняется сокращение обыкновенных дробей – ведь они являются частным случаем алгебраических дробей. Натуральные числа в числителе и знаменателе обыкновенной дроби , после чего общие множители сокращаются (при их наличии). Например, . Произведение одинаковых простых множителей можно записывать в виде степеней, а при сокращении пользоваться . В этом случае решение выглядело бы так: , здесь мы числитель и знаменатель разделили на общий множитель 2 2 ·3 . Или для большей наглядности на основании свойств умножения и деления решение представляют в виде .

По абсолютно аналогичным принципам проводится сокращение алгебраических дробей, в числителе и знаменателе которых находятся одночлены с целыми коэффициентами.

Пример.

Сократите алгебраическую дробь .

Решение.

Можно представить числитель и знаменатель исходной алгебраической дроби в виде произведения простых множителей и переменных, после чего провести сокращение:

Но более рационально решение записать в виде выражения со степенями:

Ответ:

.

Что касается сокращения алгебраических дробей, имеющих дробные числовые коэффициенты в числителе и знаменателе, то можно поступать двояко: либо отдельно выполнять деление этих дробных коэффициентов, либо предварительно избавляться от дробных коэффициентов, умножив числитель и знаменатель на некоторое натуральное число. Про последнее преобразование мы говорили в статье приведение алгебраической дроби к новому знаменателю , его можно проводить в силу основного свойства алгебраической дроби. Разберемся с этим на примере.

Пример.

Выполните сокращение дроби .

Решение.

Можно сократить дробь следующим образом: .

А можно было предварительно избавиться от дробных коэффициентов, умножив числитель и знаменатель на знаменателей этих коэффициентов, то есть, на НОК(5, 10)=10 . В этом случае имеем .

Ответ:

.

Можно переходить к алгебраическим дробям общего вида, у которых в числителе и знаменателе могут быть как числа и одночлены, так и многочлены.

При сокращении таких дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель алгебраической дроби разложить на множители.

Пример.

Сократите рациональную дробь .

Решение.

Для этого разложим на множители многочлены в числителе и знаменателе. Начнем с вынесения за скобки: . Очевидно, выражения в скобках можно преобразовать, используя

Сокращение дробей нужно для того, чтобы привести дробь к более простому виду, например, в ответе полученном в результате решения выражения.

Сокращение дробей, определение и формула.

Что такое сокращение дробей? Что значит сократить дробь?

Определение:
Сокращение дробей – это разделение у дроби числитель и знаменатель на одно и то же положительное число не равное нулю и единице. В итоге сокращения получается дробь с меньшим числителем и знаменателем, равная предыдущей дроби согласно .

Формула сокращения дробей основного свойства рациональных чисел.

\(\frac{p \times n}{q \times n}=\frac{p}{q}\)

Рассмотрим пример:
Сократите дробь \(\frac{9}{15}\)

Решение:
Мы можем разложить дробь на простые множители и сократить общие множители.

\(\frac{9}{15}=\frac{3 \times 3}{5 \times 3}=\frac{3}{5} \times \color{red} {\frac{3}{3}}=\frac{3}{5} \times 1=\frac{3}{5}\)

Ответ: после сокращения получили дробь \(\frac{3}{5}\). По основному свойству рациональных чисел первоначальная и получившееся дробь равны.

\(\frac{9}{15}=\frac{3}{5}\)

Как сокращать дроби? Сокращение дроби до несократимого вида.

Чтобы нам получить в результате несократимую дробь, нужно найти наибольший общий делитель (НОД) для числителя и знаменателя дроби.

Есть несколько способов найти НОД мы воспользуемся в примере разложением чисел на простые множители.

Получите несократимую дробь \(\frac{48}{136}\).

Решение:
Найдем НОД(48, 136). Распишем числа 48 и 136 на простые множители.
48=2⋅2⋅2⋅2⋅3
136=2⋅2⋅2⋅17
НОД(48, 136)= 2⋅2⋅2=6

\(\frac{48}{136}=\frac{\color{red} {2 \times 2 \times 2} \times 2 \times 3}{\color{red} {2 \times 2 \times 2} \times 17}=\frac{\color{red} {6} \times 2 \times 3}{\color{red} {6} \times 17}=\frac{2 \times 3}{17}=\frac{6}{17}\)

Правило сокращения дроби до несократимого вида.

  1. Нужно найти наибольший общий делитель для числители и знаменателя.
  2. Нужно поделить числитель и знаменатель на наибольший общий делитель в результате деления получить несократимую дробь.

Пример:
Сократите дробь \(\frac{152}{168}\).

Решение:
Найдем НОД(152, 168). Распишем числа 152 и 168 на простые множители.
152=2⋅2⋅2⋅19
168=2⋅2⋅2⋅3⋅7
НОД(152, 168)= 2⋅2⋅2=6

\(\frac{152}{168}=\frac{\color{red} {6} \times 19}{\color{red} {6} \times 21}=\frac{19}{21}\)

Ответ: \(\frac{19}{21}\) несократимая дробь.

Сокращение неправильной дроби.

Как сократить неправильную дробь?
Правила сокращения дробей для правильных и неправильных дробей одинаковы.

Рассмотрим пример:
Сократите неправильную дробь \(\frac{44}{32}\).

Решение:
Распишем на простые множители числитель и знаменатель. А потом общие множители сократим.

\(\frac{44}{32}=\frac{\color{red} {2 \times 2 } \times 11}{\color{red} {2 \times 2 } \times 2 \times 2 \times 2}=\frac{11}{2 \times 2 \times 2}=\frac{11}{8}\)

Сокращение смешанных дробей.

Смешанные дроби по тем же правилам что и обыкновенные дроби. Разница лишь в том, что мы можем целую часть не трогать, а дробную часть сократить или смешанную дробь перевести в неправильную дробь, сократить и перевести обратно в правильную дробь.

Рассмотрим пример:
Сократите смешанную дробь \(2\frac{30}{45}\).

Решение:
Решим двумя способами:
Первый способ:
Распишем дробную часть на простые множители, а целую часть не будем трогать.

\(2\frac{30}{45}=2\frac{2 \times \color{red} {5 \times 3}}{3 \times \color{red} {5 \times 3}}=2\frac{2}{3}\)

Второй способ:
Переведем сначала в неправильную дробь, а потом распишем на простые множители и сократим. Полученную неправильную дробь переведем в правильную.

\(2\frac{30}{45}=\frac{45 \times 2 + 30}{45}=\frac{120}{45}=\frac{2 \times \color{red} {5 \times 3} \times 2 \times 2}{3 \times \color{red} {3 \times 5}}=\frac{2 \times 2 \times 2}{3}=\frac{8}{3}=2\frac{2}{3}\)

Вопросы по теме:
Можно ли сокращать дроби при сложении или вычитании?
Ответ: нет, нужно сначала сложить или вычесть дроби по правилам, а только потом сокращать. Рассмотрим пример:

Вычислите выражение \(\frac{50+20-10}{20}\) .

Решение:
Часто допускают ошибку сокращая одинаковые числа в числителе и знаменателе в нашем случаем число 20, но их сокращать нельзя пока не выполните сложение и вычитание.

\(\frac{50+\color{red} {20}-10}{\color{red} {20}}=\frac{60}{20}=\frac{3 \times 20}{20}=\frac{3}{1}=3\)

На какие числа можно сокращать дробь?
Ответ: можно сокращать дробь на наибольший общий делитель или обычный делитель числителя и знаменателя. Например, дробь \(\frac{100}{150}\).

Распишем на простые множители числа 100 и 150.
100=2⋅2⋅5⋅5
150=2⋅5⋅5⋅3
Наибольшим общим делителем будет число НОД(100, 150)= 2⋅5⋅5=50

\(\frac{100}{150}=\frac{2 \times 50}{3 \times 50}=\frac{2}{3}\)

Получили несократимую дробь \(\frac{2}{3}\).

Но необязательно всегда делить на НОД не всегда нужна несократимая дробь, можно сократить дробь на простой делитель числителя и знаменателя. Например, у числа 100 и 150 общий делитель 2. Сократим дробь \(\frac{100}{150}\) на 2.

\(\frac{100}{150}=\frac{2 \times 50}{2 \times 75}=\frac{50}{75}\)

Получили сократимую дробь \(\frac{50}{75}\).

Какие дроби можно сокращать?
Ответ: сокращать можно дроби у которых числитель и знаменатель имеют общий делитель. Например, дробь \(\frac{4}{8}\). У числа 4 и 8 есть число, на которое они оба делятся это число 2. Поэтому такую дробь можно сократить на число 2.

Пример:
Сравните две дроби \(\frac{2}{3}\) и \(\frac{8}{12}\).

Эти две дроби равны. Рассмотрим подробно дробь \(\frac{8}{12}\):

\(\frac{8}{12}=\frac{2 \times 4}{3 \times 4}=\frac{2}{3} \times \frac{4}{4}=\frac{2}{3} \times 1=\frac{2}{3}\)

Отсюда получаем, \(\frac{8}{12}=\frac{2}{3}\)

Две дроби равны тогда и только тогда, когда одна из них получена путем сокращения другой дроби на общий множитель числителя и знаменателя.

Пример:
Сократите если возможно следующие дроби: а) \(\frac{90}{65}\) б) \(\frac{27}{63}\) в) \(\frac{17}{100}\) г) \(\frac{100}{250}\)

Решение:
а) \(\frac{90}{65}=\frac{2 \times \color{red} {5} \times 3 \times 3}{\color{red} {5} \times 13}=\frac{2 \times 3 \times 3}{13}=\frac{18}{13}\)
б) \(\frac{27}{63}=\frac{\color{red} {3 \times 3} \times 3}{\color{red} {3 \times 3} \times 7}=\frac{3}{7}\)
в) \(\frac{17}{100}\) несократимая дробь
г) \(\frac{100}{250}=\frac{\color{red} {2 \times 5 \times 5} \times 2}{\color{red} {2 \times 5 \times 5} \times 5}=\frac{2}{5}\)

Начальный уровень

Преобразование выражений. Подробная теория (2019)

Преобразование выражений

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач. Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители. Поэтому сперва, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Базовые операции упрощения

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел. Подобные - это слагаемые (одночлены) с одинаковой буквенной частью. Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы. Например, буква - это стул. Тогда чему равно выражение? Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы. Например, - это (как обычно) стул, а - это стол. Тогда:

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами . Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений. После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители, то есть представить в виде произведения. Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное. Для этого реши несколько примеров (нужно разложить на множители):

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так: .

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным». То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители). Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров :

Ответы:

1. Надеюсь, ты не бросился сразу же сокращать и? Еще не хватало «сократить» единицы типа такого:

Первым действием должно быть разложение на множители:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители. Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями». Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

Тут надо вспомнить еще одну - разность кубов:

Обрати внимание, что в знаменателе второй дроби не формула «квадрат суммы»! Квадрат суммы выглядел бы так: .

А - это так называемый неполный квадрат суммы: второе слагаемое в нем - это произведение первого и последнего, а не удвоенное их произведение. Неполный квадрат суммы - это один из множителей в разложени разности кубов:

Что делать, если дробей аж три штуки?

Да то же самое! В первую очередь сделаем так, чтобы максимальное количество множителей в знаменателях было одинаковым:

Обрати внимание: если поменять знаки внутри одной скобки, знак перед дробью меняется на противоположный. Когда меняем знаки во второй скобке, знак перед дробью снова меняется на противоположный. В результате он (знак перед дробью) не изменился.

В общий знаменатель выписавыем полностью первый знаменатель, а потом дописываем к нему все множители, которые еще не написаны, из второго, а потом из третьего (и так далее, если дробей больше). То есть получается вот так:

Хм… С дробями-то понятно что делать. Но вот как быть с двойкой?

Все просто: ты ведь умеешь складывать дроби? Значит, надо сделать так, чтобы двойка стала дробью! Вспоминаем: дробь - это операция деления (числитель делится на знаменатель, если ты вдруг забыл). И нет ничего проще, чем разделить число на. При этом само число не изменится, но превратится в дробь:

То, что нужно!

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Перво-наперво определим порядок действий. Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна. Потом выполним деление дробей. Ну и результат сложим с последней дробью. Схематически пронумерую действия:

Теперь покажу весть процесс, подкрашивая текущее действие красным:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;
2024 english-speak.ru. Изучение английского языка.